Как устроен космический корабль для детей. Так ли просто засунуть человека в банку или об устройстве пилотируемых космических кораблей. Конструкции космических аппаратов

Сегодня стартовала Всемирная неделя космоса. Проводится она ежегодно с 4 по 10 октября. Ровно 60 лет назад на околоземную орбиту вывели первый рукотворный объект советский «Спутник-1». Он вращался вокруг Земли 92 дня, пока не сгорел в атмосфере. После этого открылась дорога в космос и человеку. Стало понятно, что его нельзя отправлять с билетом в один конец. Как развивались космические технологии, узнал корреспондент телеканала «МИР 24» Владимир Сероухов.

В 1961 году саратовские зенитчики засекли на радаре неопознанный летающий объект. Их заранее предупредили: если они увидят такой падающий с неба контейнер, мешать его полету не стоит. Ведь это первый в истории космический спускаемый аппарат с человеком на борту. Но приземляться в этой капсуле было небезопасно, поэтому на высоте 7 километров катапультировался и спустился на поверхность уже с парашютом.

Капсула корабля «Восток», на сленге инженеров - «Шарик», тоже спустилась на парашюте. Так на Землю вернулись Гагарин, Терешкова и другие первопроходцы космоса. Из-за особенностей конструкции пассажиры испытывали невероятные перегрузки в 8 g. Гораздо легче условия в капсулах «Союз». Их используют более полувека, но в скоро должны заменить новым поколением кораблей - .

«Это кресло командира экипажа и второго пилота. Как раз те места, с которых будет выполняться управление кораблем, контроль всех систем. Кроме этих кресел по бокам будут еще два кресла. Это уже для исследователей», - рассказывает заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

По сравнению с семейством кораблей «Союз», которые все-таки морально устарели, и где в тесноте могли разместиться лишь трое космонавтов, капсула «Федерации» - настоящие апартаменты, 4 метра в диаметре. Сейчас главная задача - понять насколько удобен и функционален будет аппарат для экипажа.

Управление теперь доступно двум членам экипажа. Пульт шагает в ногу со временем - это три сенсорных дисплея, где можно контролировать информацию и быть более автономным на орбите.

«Вот для того, что бы выбрать место посадки, куда мы можем сесть. Мы непосредственно видим карту, трассу полета. Погодные условия они также могут контролировать, если эта информация будет передана с Земли, - отметил заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

«Федерация» рассчитана для полетов на Луну, это около четырех суток пути в одну сторону. Все это время космонавты должны находиться в позе эмбриона. В спасательных креслах, или ложементах удивительно удобно. Каждое - ювелирная работа.

«Измерение всех антропометрических данных начинается с измерения массы», - указал начальник сектора медицинского отдела НПП «Звезда» Виктор Синигин.

Вот оно - космическое ателье, предприятие «Звезда». Здесь для космонавтов делают индивидуальные скафандры и ложементы. Людям легче 50 килограммов путь на борт заказан, как и тем, кто тяжелее 95. Рост тоже должен быть средним, чтобы уместиться в салоне корабля. Поэтому и мерки снимают в позе эмбриона.

Так отливали кресло для японского космонавта Коичи Ваката. Получили отпечаток таза, спины и головы. В условиях невесомости рост любого космонавта может увеличиться на пару сантиметров, так что ложемент делают с запасом. Он должен быть не просто комфортным, но и безопасным в случае жесткой посадки.

«Сама идея моделирования в том, что бы уберечь внутренние органы. Почки, печень они капсулированные. Если дать им возможность расшириться они могут порваться, как полиэтиленовый пакет с водой, упавший на пол», - пояснил Синигин.

Всего таким способом сделали 700 ложементов не только для россиян, но и для японцев, итальянцев и даже коллег из Штатов, которые работали на станциях «Мир» и МКС.

«Американцы на своем «Шаттле» везли наши ложементы и скафандры, которые мы для них делали, и другое спасательное снаряжение. Оставляли это все на станции, на случай аварийного покидания станции, но уже на нашем корабле», - рассказал ведущий инженер испытательного отдела НПП «Звезда» Владимир Масленников.

Отчалит в космос, когда ему подберут подходящий ракетоноситель. Это должно случиться уже через четыре года. Испытание даст отсчет новой эпохе космической эры.

Введение

Из курса физики я узнала, что для того чтобы тело стало искусственным спутником Земли, ему нужно сообщить скорость равную 8 км/с (I космическая скорость). Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет спутником Земли, обращающимся вокруг нее по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников!

А для того чтобы достичь других планет космическому кораблю необходимо сообщить II космическую скорость, это около 11, 6 км/с! Например чтобы достичь Марса, что в скором времени собираются сделать американцы, нужно лететь с такой огромной скоростью более восьми с половиной месяцев! И это не считая обратной дороги на Землю.

Каким же должно быть устройство космического корабля, чтобы достичь таких огромных, невообразимых скоростей?! Данная тема меня сильно заинтересовала, и я решила узнать все тонкости конструкции космических кораблей. Как оказалось, задачи практического конструирования вызывают в жизни новые формы летательных аппаратов и требуют разработки новых материалов, которые в свою очередь создают новые проблемы и выявляют много интересных аспектов старых проблем как в области фундаментальных, так и в области прикладных исследований.

Материалы

Основу развития техники составляют знания о свойствах материалов. Во всех космических аппаратах используются разнообразные материалы в самых различных условиях.

В последние несколько лет резко возросло количество изучаемых материалов и представляющих для нас интерес характеристик. Быстрый рост количества технических материалов, используемых при создании космических кораблей, а также возрастающая взаимозависимость конструкций космических кораблей и свойств материалов иллюстрируются табл. 1. В 1953 г. алюминий, магний, титан, сталь и специальные сплавы представляли интерес в первую очередь как авиационные материалы. Пять лет спустя, в 1958 г., они получили широкое применение в ракетостроении. В 1963 г. каждая из указанных групп материалов включала уже сотни комбинаций элементов или составных частей, а количество представляющих интерес материалов увеличилось на несколько тысяч. В настоящее время почти везде нужны новые и усовершенствованные материалы, и вряд ли положение изменится в будущем.

Таблица 1

Материалы, используемые в конструкциях космических аппаратов

Материал

Бериллий

Материалы, обеспечивающие регулирование теплового режима

Термоэлектрические материалы

Фотоэлектрические материалы

Защитные покрытия

Керамика

Материалы, армированные нитями

Уносимые покрытия (абляционные материалы)

Слоистые материалы

Полимеры

Тугоплавкие металлы

Специальные сплавы

Титановые сплавы

Магниевые сплавы

Алюминиевые сплавы

Потребность в новых знаниях в области материаловедения и технологии материалов находит отклик в наших университетах, частных компаниях, независимых исследовательских организациях и различных правительственных органах. Табл.2 дает некоторое представление о характере и масштабах исследований, проводимых НАСА в области разработки новых материалов. Эти работы включают как фундаментальные, так и прикладные исследования. Наибольшие усилия сосредоточены в области фундаментальных исследований по физике твердого тела и химии. Здесь представляют интерес атомное строение материи, межатомные силовые взаимодействия, движение атомов и особенно влияние дефектов, соизмеримых с размерами атомов.

Таблица 2

Программа исследования материалов

К следующей категории относятся конструкционные материалы с большой удельной прочностью, как титан, алюминий и бериллий, теплостойкие и тугоплавкие сплавы, керамика и полимеры. К особой группе следует отнести материалы для сверхзвуковой транспортной авиации.

В программе НАСА постоянно возрастает интерес к категории материалов, используемых в электронике. Ведутся исследования сверхпроводников и лазеров. В группе полупроводников изучаются как органические, так и неорганические материалы. Ведутся также исследования в области термоэлектроники.

И наконец, программа исследования материалов завершается рассмотрением с весьма общих позиций вопросов практического использования материалов.

Чтобы показать потенциальные возможности применения результатов исследования материалов в будущем, я остановлюсь на исследованиях, связанных с изучением влияния пространственного расположения атомов на фрикционные свойства металлов.

Если бы удалось уменьшить трение между соприкасающимися металлическими поверхностями, то это позволило бы усовершенствовать практически все типы механизмов с подвижными частями. В большинстве случаев трение между соприкасающимися поверхностями велико, и чтобы его снизить, применяется смазка. Однако понимание механизма трения между несмазанными поверхностями также представляет большой интерес.

На рис.1 представлены некоторые результаты исследований, проведенных в Льюисском исследовательском центре. Эксперименты проводились в условиях глубокого вакуума, так как атмосферные газы загрязняют поверхности и резко изменяют их фрикционные свойства. Первый важный вывод состоит в том, что фрикционные характеристики чистых металлов в сильной степени зависят от их естественной атомной структуры (см. левую часть рис.1). При затвердевании металлов атомы одних образуют гексагональную пространственную решетку, а атомы других - кубическую. Было показано, что металлы с гексагональной решеткой обладают гораздо меньшим трением, чем металлы с кубической решеткой.

Рис 1. Влияние атомной структуры на сухое трение (без смазки).

Рис.2. Требования к теплостойким материалам.

Космический корабль. Наверняка многие из вас, услышав это словосочетание, представляют себе нечто огромное, сложное и густонаселенное, целый город в космосе. Так когда-то представлял себе космические корабли и я, да и многочисленные фантастические фильмы и книги этому активно способствуют.

Наверное, это хорошо, что авторов фильмов ограничивает только фантазия в отличие от инженеров-конструкторов космической техники. Хотя бы в кино мы можем насладиться гигантскими объемами, сотнями отсеков и тысячами человек экипажа...

Настоящий космический корабль размерами вовсе не впечатляет:

На фотографии советский космический корабль Союз-19, снятый американскими астронавтами из корабля Аполлон. Видно, что корабль довольно маленький, а учитывая, что обитаемый объем занимает далеко не весь корабль, очевидно, что там должно быть довольно тесно.

Оно и не удивительно: большие размеры - это большая масса, а масса - враг номер один в космонавтике. Поэтому конструкторы космических кораблей стараются сделать их как можно легче, нередко, в ущерб комфорту экипажа. Обратите внимание, как тесно в корабле Союз:

Американские корабли в этом плане особо не отличаются от русских. Например, вот фотография Эда Уайта и Джима Мак-Дивита в космическом корабле Джемини.

Хоть какой-то свободой передвижений могли похвастаться разве что экипажи кораблей Спейс Шаттл. В их распоряжении были два относительно просторных отсека.

Полетная палуба (фактически кабина управления):

Средняя палуба (это бытовой отсек со спальными местами, туалетом, кладовой и шлюзовой камерой):

Аналогичный по габаритам и планировке советский корабль Буран, к сожалению, ни разу не летал в пилотируемом режиме, как и ТКС, который до сих пор обладает рекордным обитаемым объемом среди всех когда-либо проектировавшихся кораблей.

Но обитаемый объем - далеко не единственное требование, предъявляемое космическому кораблю. Доводилось мне слышать высказывания наподобие такого: "Засунули человека в алюминиевую банку и отправили крутиться вокруг Земли-матушки". Данная фраза, конечно же, некорректна. Так чем же космический корабль отличается от простой металлической бочки?

А тем, что космический корабль должен:
- Обеспечивать экипажу пригодную для дыхания газовую смесь,
- Удалять из обитаемого объема выдыхаемые экипажем углекислый газ и пары воды,
- Обеспечивать приемлемый для экипажа температурный режим,
- Иметь герметичный объем, достаточный для жизнедеятельности экипажа,
- Обеспечивать возможность управления ориентацией в пространстве и (опционально) возможность осуществления орбитальных маневров,
- Иметь необходимые для жизнедеятельности экипажа запасы пищи и воды,
- Обеспечивать возможность безопасного возврата экипажа и грузов на землю,
- Быть как можно легче,
- Иметь систему аварийного спасения, позволяющую вернуть экипаж на землю при аварийной ситуации на любом этапе полета,
- Быть очень надежным. Любой один отказ оборудования не должен приводить к отмене полета, любой второй отказ не должен угрожать жизни экипажа.

Как видите, это уже не простая бочка, а сложный технологичный аппарат, напичканный множеством разнообразной аппаратуры, имеющий двигатели и запас топлива к ним.

Вот для примера макет советского космического корабля первого поколения Восток.

Он состоит из герметичной сферической капсулы и конического приборно-агрегатного отсека. Такую компоновку, при которой большинство приборов вынесено в отдельный негерметичный отсек, имеют почти все корабли. Это необходимо для экономии массы: при размещении всех приборов в герметичном отсеке, этот отсек получился бы довольно большим, а поскольку ему нужно удерживать внутри себя атмосферное давление и выдерживать значительные механические и тепловые нагрузки во время входа в плотные слои атмосферы при спуске на землю, стенки его должны быть толстыми, прочными, что делает всю конструкцию очень тяжелой. А негерметичному отсеку, который при возврате на землю отделится от спускаемого аппарата и сгорит в атмосфере, прочные тяжелые стенки не нужны. Спускаемый аппарат без лишних при возврате приборов получается меньше и соответственно легче. Сферическая форма ему придается тоже для уменьшения массы, ведь из всех геометрических тел одинакового объема сфера имеет самую маленькую площадь поверхности.

Единственный космический корабль, где вся аппаратура была помещена в герметичную капсулу, - американский Меркурий. Вот его фото в ангаре:

В этой капсуле мог поместиться один человек и то с трудом. Поняв неэффективность такой компоновки, американцы свою следующую серию кораблей Джемини делали уже с отделяемым негерметичным приборно-агрегатным отсеком. На фотографии это задняя часть корабля белого цвета:

Кстати, в белый цвет этот отсек покрашен не просто так. Дело в том, что стенки отсека пронизаны множеством трубок, по которым циркулирует вода. Это система отвода избыточного тепла, получаемого от Солнца. Вода забирает тепло изнутри обитаемого отсека и отдает его на поверхность приборно-агрегатного отсека, откуда тепло излучается в пространство. Чтобы эти радиаторы меньше грелись под прямыми солнечными лучами, их покрасили в белый цвет.

На кораблях Восток радиаторы были расположены на поверхности конического приборно-агрегатного отсека и закрывались заслонками, похожими на жалюзи. Открывая разное количество заслонок, можно было регулировать теплоотдачу радиаторов, а значит и температурный режим внутри корабля.

На кораблях Союз и их грузовых аналогах Прогресс система отвода тепла аналогична Джемини. Обратите внимание на цвет поверхности приборно-агрегатного отсека. Разумеется, белый:)

Внутри приборно-агрегатного отсека расположены маршевые двигатели, маневровые двигатели малой тяги, запас топлива для всего этого добра, аккумуляторы, запасы кислорода и воды, часть бортовой электроники. Снаружи обычно устанавливают антенны радиосвязи, антенны сближения, различные датчики ориентации и солнечные батареи.

В спускаемом аппарате, который одновременно служит кабиной космического корабля, расположены только те элементы, которые нужны при спуске аппарата в атмосфере и мягкой посадки, а также то, что должно быть в прямом доступе для экипажа: пульт управления, радиостанция, аварийный запас кислорода, парашюты, кассеты с гидроксидом лития для удаления углекислого газа, двигатели мягкой посадки, ложементы (кресла для космонавтов), аварийно-спасательные комплекты на случай приземления в нерасчетной точке, ну и, разумеется, сами космонавты.

В кораблях Союз есть еще один отсек - бытовой:

В нем находится то, что нужно в длительном полете, но без чего можно обойтись на этапе выведения корабля на орбиту и при приземлении: научные инструменты, запасы пищи, Ассенизационно-санитарное устройство (туалет), скафандры для внекорабельной деятельности, спальные мешки и прочие бытовые предметы.

Известен случай с космическим кораблем Союз ТМ-5, когда для экономии топлива бытовой отсек отстрелили не после выдачи тормозного импульса на сход с орбиты, а до. Только вот тормозного импульса не было: отказала система ориентации, потом не удавалось запустить двигатель. В результате космонавтам пришлось еще на сутки задержаться на орбите, а туалет остался в отстреленном бытовом отсеке. Сложно передать, какие неудобства испытали космонавты за эти сутки, пока, наконец, им не удалось благополучно приземлиться. После этого случая решили забить на такую экономию топлива и бытовой отсек отстреливать вместе с приборно-агрегатным после торможения.

Вот, сколько всяких сложностей оказалось в "банке". Мы еще отдельно пройдемся по каждому типу космических кораблей СССР, США и Китая в следующих статьях. Следите за обновлениями.

В маленьком городке, затерянном в пустынном районе Калифорнии, никому не известный любитель-одиночка пытается тягаться со знаменитыми на весь мир миллиардерами и корпорациями за право строить космические корабли для отправки грузов на околоземную орбиту. У него не хватает помощников и недостаточно ресурсов. Но, несмотря на все трудности, он собирается довести свое дело до конца.

Дейв Мастен внимательно смотрит на экран своего компьютера. Его палец на мгновение завис над кнопкой мыши. Дейв знает, что вот-вот он откроет письмо от агентства DARPA, и это письмо изменит его жизнь независимо от того, что там написано. Он либо получит финансирование, либо будет вынужден навсегда расстаться со своей мечтой.

Две новости

Это настоящая поворотная точка — ведь на кону вопрос об участии в программе XS-1, финансируемой DARPA, цель которой — строительство многоразового беспилотного космоплана, способного выдержать десять запусков за десять дней, разгоняться до скорости свыше 10 М и с помощью дополнительной ступени доставлять на низкую околоземную орбиту полезный груз весом более 1,5 т. При этом стоимость каждого запуска не должна превышать $5 млн. Дейв Мастен — вечный аутсайдер, беженец из Кремниевой долины, предприниматель-отшельник в области космической индустрии — еще никогда не был столь близок к созданию полноценной космической системы, как в этот раз. Если его компания станет одним из трех участников проекта XS-1, Дейв тут же получит грант в размере $3 млн и дополнительные финансовые вливания в следующем году. А стоимость будущего контракта может превысить $140 млн!


В случае отказа компания Дейва так и останется никому не известной мелкой фирмой, влачащей жалкое существование и лелеющей хрупкую мечту о строительстве орбитальных космических аппаратов. Но, что еще хуже, будет упущена редкая возможность воплотить в жизнь задумку Мастена. Государственные программы космических полетов исторически отдавали предпочтение (по сути, это было требованием) космическим аппаратам, которым для посадки необходим аэродром либо огромный парашют. Мастен предложил создать ракету с вертикальным взлетом и вертикальной посадкой — такую, что при возвращении на Землю ей не понадобится ни посадочная полоса, ни парашют. Программа XS-1 представила удачный шанс осуществить эту идею, но если удача вдруг отвернется и шанс участвовать в ней выпадет другому, то кто знает, откроет ли правительство новые источники финансирования в будущем.

Итак, одно электронное письмо, два совершенно разных пути, один из которых ведет прямиком в космос. Мастен кликает мышкой и начинает читать — медленно, вникая в каждое слово. Закончив, он поворачивается к инженерам, собравшимся у него за спиной, и с невозмутимым выражением лица объявляет: «У меня две новости — хорошая и плохая. Хорошая новость в том, что нас отобрали для участия в XS-1! Плохая — что нас отобрали для участия в XS-1».


Кластер у космопорта

Местность на севере пустыни Мохаве больше напоминает кадры из фильма-катастрофы: заброшенные заправочные станции, изрисованные граффити, и разбитые дороги, на которых кое-где встречаются тушки сбитых животных, лишь подкрепляют это впечатление. Горы, красующиеся вдали на горизонте, неумолимый солнечный зной и кажущееся бесконечным безоблачное голубое небо.

Однако эта сбивающая с толку пустота обманчива: на западе Соединенных Штатов расположена авиационная база Эдвардс (R-2508) — главный испытательный полигон в стране. 50 000 квадратных километров закрытого воздушного пространства то и дело рассекают боевые самолеты. Именно здесь 68 лет назад Чак Йегер стал первым летчиком, превысившим скорость звука в управляемом горизонтальном полете.


Запрет на полеты пассажирских и частных самолетов, однако, не распространяется на резидентов расположенного неподалеку аэрокосмического порта в Мохаве, в 2004 году получившего статус первого коммерческого космопорта в стране. В том же году сюда перебрался и Мастен — сразу после того, как стартап, в котором он работал инженером-программистом, был куплен коммуникационным гигантом Cisco Systems. Из нескольких пустующих зданий, предложенных Дейву при переезде, тот остановил свой выбор на заброшенных казармах морской пехоты, построенных в 1940-х годах. Здание нуждалось в серьезном ремонте: крыша текла, а стены и углы были густо украшены паутиной. Для Дейва это место оказалось идеальным: благодаря высоким шестиметровым потолкам тут могли уместиться все летательные аппараты, которые он и трое его работников конструировали в то время. Еще одним плюсом стала возможность «застолбить» несколько стартовых площадок и осуществлять с них пробные пуски.

На протяжении нескольких лет о существовании компании Masten Space Systems знало лишь несколько специалистов в области космических технологий и несколько соседей-резидентов космопорта, среди которых числятся признанные гиганты индустрии вроде Scaled Composites, положившей начало частным инвестициям в космос, Virgin Galactic Ричарда Брэнсона и Vulcan Stratolaunch Systems Пола Аллена. Их просторные ангары буквально напичканы сложным оборудованием, которое стоит дороже, чем вся MSS вместе взятая. Однако подобная конкуренция не помешала детищу Мастена в 2009 году выиграть $1 млн в устроенном NASA соревновании по строительству лунного посадочного модуля. После этого о компании вдруг заговорили, и Дейв начал получать заказы — кроме NASA, его ракеты стали пользоваться популярностью у известных университетов страны и даже в министерстве обороны — для проведения высотных научных экспериментов и исследований.


Компьютерный макет космического корабля XS-1 с вертикальными взлетом-посадкой, проектируемого компанией Masten Space Systems

После официального включения в программу XS-1 авторитет MSS вырос еще сильнее — в соперничестве с корпорацией Boeing и крупной военно-промышленной компанией Northrop Grumman Мастен выглядел весьма солидно. Помимо этих гигантов индустрии через партнерство с Boeing в проекте задействована Blue Origin — частная аэрокосмическая компания, принадлежащая Джеффу Безосу, а также уже упоминавшиеся Scaled Composites и Virgin Galactic, сотрудничающие с Northrop Grumman. Сама же MSS решила объединить усилия с еще одной небольшой компанией из Мохаве — XCOR Aerospace. Итак, в гонке по созданию многоразового космического грузовика Дейву предстояло схлестнуться с самыми маститыми и отлично обеспеченными корпорациями. До следующего этапа — оценки промежуточных результатов и принятия решения о дальнейшем финансировании — оставалось всего лишь тринадцать месяцев.

Лучше, чем в «Боинге»

Здание MSS находится в таком же состоянии, как и тогда, когда его занял Мастен. Крыша все так же течет, и можно случайно наткнуться на ядовитого паука. По периметру расставлены ящики с инструментами. Кроме баннеров с названием компании, доски, исписанной уравнениями, и американского флага на стенах ничего нет. Центр ангара занимает ракета Xaero-B, она держится на четырех металлических ножках, над которыми находятся два объемных бака сферической формы. Один из них заполняется изопропиловым спиртом, в другой заливается жидкий кислород. Чуть выше по кругу располагаются дополнительные баки с гелием. Они необходимы для работы двигателей реактивной системы управления, предназначенной для контроля пространственного положения корабля. Двигатель в нижней части ракеты крепится в кардановом подвесе, чтобы обеспечить управляемость этой странной насекомоподобной конструкции.


Несколько сотрудников заняты подготовкой Xaero-B к совместному с Университетом Колорадо (Боулдер, США) эксперименту, в котором планируется проверить, сможет ли корабль поддерживать связь с наземными телескопами и участвовать в поиске экзопланет.

Компания Мастена привлекает определенный тип инженеров-механиков, настоящих фанатов своего дела. «Я проходил практику в Boeing в отделе двигателей для модели 777, — рассказывает 26-летний инженер Кайл Ниберг. — Boeing — очень хорошая компания. Но если честно, мне не по душе сидеть в офисе днями напролет. Я представил, что следующие 40 лет моей жизни пройдут так, и здорово перепугался. В небольшой частной компании вроде MSS инженеры могут испытать всю гамму эмоций при воплощении в жизнь своих задумок — от эйфории до полного разочарования. Такое редко где встретишь».

Заправка в точке Лагранжа

Основным направлением деятельности Мастена всегда было создание ракеты, предназначенной для перевозки грузов, а не астронавтов, своего рода «рабочей лошадки». Такие корабли обязательно понадобятся, например, для транспортировки кислорода и водорода с лунной поверхности до заправочной станции, которую однажды поместят в одной из точек Лагранжа между Землей и Луной. Именно поэтому Мастен закладывает в свои разработки принцип вертикального взлета и посадки. «Это единственный из известных мне способов, который сработает на поверхности любого твердого тела в Солнечной системе, — объясняет он. — Ведь самолет или шаттл на Луне не посадишь!»


Кроме того, вертикальные взлет-посадка упрощают повторное использование космического корабля. Некоторые ракеты Мастена уже совершили несколько сотен полетов, подготовка к повторному пуску занимает не более одного дня. По условиям программы XS-1 нужно осуществить десять стартов в течение десяти дней — для MSS это давно стало обычным делом. Здесь Дейв сильно опередил своих конкурентов, которым пока что не удалось сделать это ни разу.

Скромность и трудолюбие

Итак, агентство DARPA объявило, что все три участника программы XS-1 допущены до фазы 1B, на осуществление которой каждая компания получит дополнительно $6 млн. Основными задачами фазы 1 были проведение проектных работ и подготовка инфраструктуры — другими словами, надо было продемонстрировать, что компания сможет работать в XS-1. В фазе 1B участники должны перейти к пробным пускам, собрать соответствующие данные и продолжить совершенствование конструкции, чтобы показать, как они планируют достичь финальной цели. Результаты фазы 1B необходимо предоставить следующим летом, а первый полет XS-1 на орбиту запланирован на 2018 год.


Неважно, каков будет итог этого соревнования, но сам факт, что Дейву удалось продвинуться настолько далеко, может в корне перевернуть индустрию частных космических проектов. «Это полностью меняет условия игры, — полагает Ханна Кернер, исполнительный директор Space Frontier Foundation, бывший инженер NASA. — Агентство DARPA не просто предоставило частным компаниям возможность участвовать в государственной космической программе, но и признало в недавно возникших небольших компаниях потенциально серьезных игроков». Даже если на мгновение забыть об участии в XS-1, MSS все равно сложно назвать компанией-аутсайдером. В августе у нее открылся новый офис на мысе Канаверал — в космическом центре в штате Флорида, который с недавнего времени начал функционировать как хаб для коммерческих запусков в космос. В этом же бизнес-центре, находящемся неподалеку от Космического центра Кеннеди, расположился офис компании SpaceX.

Несмотря на это, у MSS по‑прежнему не хватает людей и ресурсов, и она все так же представляет собой группу инженеров-романтиков, которые сверлят, долбят молотками и паяют в своем ангаре по соседству с богатыми крупными компаниями. И невольно начинаешь за них болеть — хочется, чтобы у них все получилось.

«Я думаю, мы обязательно потягаемся с нашими конкурентами», — вот и все, что ответил Мастен на вопрос о шансах на успех в XS-1. Он не видит смысла обещать золотые горы, хотя у многих его коллег по цеху это уже вошло в привычку. Многие добиваются успеха, потому что умеют красиво говорить. Дейв не из их числа — он спокоен, трудолюбив, скромен, но так же, как и его соперники, неистово жаждет осуществить свои задумки.

Введение

Из курса физики я узнала, что для того чтобы тело стало искусственным спутником Земли, ему нужно сообщить скорость равную 8 км/с (I космическая скорость). Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет спутником Земли, обращающимся вокруг нее по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников!

А для того чтобы достичь других планет космическому кораблю необходимо сообщить II космическую скорость, это около 11, 6 км/с! Например чтобы достичь Марса, что в скором времени собираются сделать американцы, нужно лететь с такой огромной скоростью более восьми с половиной месяцев! И это не считая обратной дороги на Землю.

Каким же должно быть устройство космического корабля, чтобы достичь таких огромных, невообразимых скоростей?! Данная тема меня сильно заинтересовала, и я решила узнать все тонкости конструкции космических кораблей. Как оказалось, задачи практического конструирования вызывают в жизни новые формы летательных аппаратов и требуют разработки новых материалов, которые в свою очередь создают новые проблемы и выявляют много интересных аспектов старых проблем как в области фундаментальных, так и в области прикладных исследований.

Материалы

Основу развития техники составляют знания о свойствах материалов. Во всех космических аппаратах используются разнообразные материалы в самых различных условиях.

В последние несколько лет резко возросло количество изучаемых материалов и представляющих для нас интерес характеристик. Быстрый рост количества технических материалов, используемых при создании космических кораблей, а также возрастающая взаимозависимость конструкций космических кораблей и свойств материалов иллюстрируются табл. 1. В 1953 г. алюминий, магний, титан, сталь и специальные сплавы представляли интерес в первую очередь как авиационные материалы. Пять лет спустя, в 1958 г., они получили широкое применение в ракетостроении. В 1963 г. каждая из указанных групп материалов включала уже сотни комбинаций элементов или составных частей, а количество представляющих интерес материалов увеличилось на несколько тысяч. В настоящее время почти везде нужны новые и усовершенствованные материалы, и вряд ли положение изменится в будущем.

Таблица 1

Материалы, используемые в конструкциях космических аппаратов

Материал

Бериллий

Материалы, обеспечивающие регулирование теплового режима

Термоэлектрические материалы

Фотоэлектрические материалы

Защитные покрытия

Керамика

Материалы, армированные нитями

Уносимые покрытия (абляционные материалы)

Слоистые материалы

Полимеры

Тугоплавкие металлы

Специальные сплавы

Титановые сплавы

Магниевые сплавы

Алюминиевые сплавы

Потребность в новых знаниях в области материаловедения и технологии материалов находит отклик в наших университетах, частных компаниях, независимых исследовательских организациях и различных правительственных органах. Табл.2 дает некоторое представление о характере и масштабах исследований, проводимых НАСА в области разработки новых материалов. Эти работы включают как фундаментальные, так и прикладные исследования. Наибольшие усилия сосредоточены в области фундаментальных исследований по физике твердого тела и химии. Здесь представляют интерес атомное строение материи, межатомные силовые взаимодействия, движение атомов и особенно влияние дефектов, соизмеримых с размерами атомов.

Таблица 2

Программа исследования материалов

К следующей категории относятся конструкционные материалы с большой удельной прочностью, как титан, алюминий и бериллий, теплостойкие и тугоплавкие сплавы, керамика и полимеры. К особой группе следует отнести материалы для сверхзвуковой транспортной авиации.

В программе НАСА постоянно возрастает интерес к категории материалов, используемых в электронике. Ведутся исследования сверхпроводников и лазеров. В группе полупроводников изучаются как органические, так и неорганические материалы. Ведутся также исследования в области термоэлектроники.

И наконец, программа исследования материалов завершается рассмотрением с весьма общих позиций вопросов практического использования материалов.

Чтобы показать потенциальные возможности применения результатов исследования материалов в будущем, я остановлюсь на исследованиях, связанных с изучением влияния пространственного расположения атомов на фрикционные свойства металлов.

Если бы удалось уменьшить трение между соприкасающимися металлическими поверхностями, то это позволило бы усовершенствовать практически все типы механизмов с подвижными частями. В большинстве случаев трение между соприкасающимися поверхностями велико, и чтобы его снизить, применяется смазка. Однако понимание механизма трения между несмазанными поверхностями также представляет большой интерес.

На рис.1 представлены некоторые результаты исследований, проведенных в Льюисском исследовательском центре. Эксперименты проводились в условиях глубокого вакуума, так как атмосферные газы загрязняют поверхности и резко изменяют их фрикционные свойства. Первый важный вывод состоит в том, что фрикционные характеристики чистых металлов в сильной степени зависят от их естественной атомной структуры (см. левую часть рис.1). При затвердевании металлов атомы одних образуют гексагональную пространственную решетку, а атомы других - кубическую. Было показано, что металлы с гексагональной решеткой обладают гораздо меньшим трением, чем металлы с кубической решеткой.

Рис 1. Влияние атомной структуры на сухое трение (без смазки).

Рис.2. Требования к теплостойким материалам.

Затем был исследован ряд металлов, атомы которых расположены в вершинах шестигранных призм с разными расстояниями между их основаниями. Исследования показали, что трение уменьшается с увеличением высоты призм (см. центральную часть рис.1). Наименьшим трением обладают металлы с максимальным отношением расстояния между основаниями призм к расстоянию между боковыми гранями. Этот экспериментальный результат согласуется с выводами теории деформации металлов.

На следующем этапе в качестве объекта исследования был выбран титан, о котором известно, что он имеет гексагональную структуру и плохие фрикционные характеристики. Чтобы улучшить фрикционные характеристики титана, стали исследовать его сплавы с другими металлами, присутствие которых должно было увеличить размеры атомных решеток. Как и ожидалось, с увеличением расстояния между основаниями призм трение резко уменьшилось (см. правую часть рис.1). В настоящее время проводятся дополнительные эксперименты по дальнейшему улучшению свойств титановых сплавов. Например, мы можем "упорядочить" сплав, т.е. с помощью термообработки расположить атомы разных элементов более подходящим образом и исследовать, как это повлияет на трение. Новые достижения в этой области повысят надежность машин, имеющих вращающиеся части, и, по-видимому, откроют широкие возможности в будущем.

Хотя может создаться впечатление, что в последнее время мы достигли больших успехов в разработке теплостойких материалов, прогресс в исследовании космического пространства в следующие 35 лет будет тесно связан с разработкой новых материалов, которые могли бы работать при высоких температурах в течение многих часов, а в некоторых случаях и лет.

На рис.2 показано, как это важно. По оси ординат здесь отложено время работы в часах, а по оси абсцисс - рабочая температура в градусах Цельсия. В заштрихованной области от 1100 до 3300°С единственными металлическими материалами, которые можно использовать, являются тугоплавкие металлы. На оси ординат горизонтальной чертой отмечена продолжительность работы, равная одному году. Область рабочих параметров ядерного ракетного двигателя ограничена температурами от 2100 до 3200° С и продолжительностью работы от 15 мин до 6 час. (Эти цифры являются весьма приближенными и приводятся только для ориентировочного определения границ области рабочих параметров.)

Область с надписью "гиперзвуковые самолеты" характеризует условия работы материалов обшивки. Здесь требуется гораздо большая продолжительность работы. Для космических аппаратов многократного использования называют времена работы всего от 60 до 80 час, однако на самом деле может потребоваться продолжительность работы порядка тысяч часов в интервале температур от 1320 до 1650° С и более.

По рис.2 можно судить о значении тугоплавких металлов для решения задач, которые ставит программа исследования космического пространства. Некоторые из этих материалов уже применяются, и я уверена, что они будут усовершенствованы и приобретут с течением времени еще большее значение.

Иногда можно услышать, что современная технология материалов на самом деле не наука, а скорее высокоразвитое искусство. Возможно, это отчасти и так, но я уверена, что материаловедение и технология материалов уже достигли весьма высокого уровня развития и сыграют большую роль в жизни нашей страны.

Конструкции космических аппаратов

Обратимся теперь к вопросам конструирования космических аппаратов. На рис.3 указаны основные конструктивные проблемы, возникающие при проектировании современных ракет-носителей и космических летательных аппаратов. К ним относятся: нагрузки, действующие на конструкцию, динамика и механика полета; разработка конструкций, выдерживающих большие тепловые нагрузки; защита от воздействия условий космического пространства, а также разработка новых конструкций и комбинаций материалов для применения в будущем.

Рис.3. Конструкции космических аппаратов.

Разработка конструкций космических аппаратов находится еще на ранней стадии развития и базируется на опыте конструирования самолетов и баллистических ракет. Из рис.4 следует, что большие современные ракеты-носители во многом родственны баллистическим ракетам. К отличительным особенностям их конфигураций следует отнести большое удлинение, снижающее сопротивление атмосферы, и большой объем, занимаемый топливом. Вес топлива может составлять от 85 до 90% стартового веса ракеты-носителя. Удельный вес конструкции очень мал, так что по существу это тонкостенная гибкая оболочка. При сегодняшней высокой стоимости единицы веса полезной нагрузки, выведенной на орбиту или траекторию полета к Луне и планетам, особо выгодно уменьшение веса основной конструкции до допустимого минимума. Еще более остро встают проблемы конструирования в случае использования в качестве топливных компонентов жидких водорода и кислорода, имеющих малый удельный вес, вследствие чего возникает потребность в больших объемах для размещения топлива.

Рис.4. Большие ракеты-носители.

Конструктор будущих ракет-носителей столкнется со многими новыми сложными проблемами. Ракеты-носители, по всей вероятности, будут больших размеров, станут сложней и дороже. Для многократного их использования без больших затрат на обратную доставку или ремонт потребуется решить важные задачи конструирования и технологии материалов.

Необычные требования, предъявляемые к разным типам космических аппаратов будущего, уже активизировали поиски новых типов конструкций и производственных процессов.

Требования защиты от опасностей, ожидающих нас в космическом пространстве, таких, как метеориты, жесткое и тепловое излучение, в значительной мере активизируют исследования, проводимые с целью создания конструкций космических аппаратов. Например, при длительном хранении жидкого водорода и других криогенных жидкостей в условиях космического пространства утечка компонентов топлива через дренажную систему и метеоритные пробоины в топливных баках должна быть практически исключена. Значительные успехи достигнуты в области разработки изоляционных материалов, обладающих исключительно малой теплопроводностью. Сейчас можно обеспечить хранение топлива в течение времени нахождения на стартовой площадке и нескольких оборотов вокруг Земли. Однако при длительном хранении в условиях космического пространства сроком до одного года возникает очень сложная проблема, связанная с притоком тепла через элементы конструкции баков и трубопроводы.

Другие проблемы космического полета, такие, как проблема складывающихся больших космических аппаратов или их частей в процессе вывода на орбиту с последующей их сборкой в космическом пространстве, также потребуют новых конструктивных решений. В то же время в течение космического полета на космический аппарат не воздействуют ни гравитационные, ни аэродинамические силы, что расширяет область возможных решений при проектировании. На фиг.5 показан пример необычного конструктивного решения, возможного только в условиях космического пространства. Это один из вариантов орбитального радиотелескопа, имеющего гораздо большие размеры, чем те, которые можно было бы обеспечить на Земле.

Такие устройства нужны для изучения естественного радиоизлучения звезд, галактик и других небесных объектов. Одна из полос радиочастот, представляющих интерес для астрономов, лежит в диапазоне от 10 Мгц и ниже. Радиоволны с такой частотой не проходят через земную ионосферу. Для приема низкочастотного радиоизлучения необходимы орбитальные антенны чрезвычайно больших размеров. В левой части фиг.5 показана кривая зависимости диаметра антенны от частоты принимаемого излучения. Видно, что с уменьшением частоты диаметр антенны увеличивается и для приема радиоволн с частотой менее 10 Мгц нужны антенны диаметром более 1,5 км.

Рис 5. Новые конструкции. Орбитальные антенны.

Антенну таких размеров нельзя вывести на орбиту, да и ее вес при использовании обычных принципов проектирования намного превысит возможности самых больших ракет-носителей. Даже с учетом отсутствия силы тяжести проектирование таких антенн представляет большие трудности. Например, если сделать рефлектор антенны сплошным из алюминиевой фольги толщиной всего 0,038 мм, то и тогда вес материала поверхности при диаметре антенны 1,6 км будет составлять 214 т. К счастью, благодаря малой частоте принимаемого радиоизлучения поверхность антенны можно сделать решетчатой. Последние достижения в области больших ажурных конструкций позволяют выполнить решетку из тонких нитей. При этом материал, образующий поверхность антенны, будет весить от 90 до 140 кг. Такая конструкция позволит вывести антенну на орбиту и затем собрать ее. Одновременно можно обеспечить плотную упаковку антенны вместе с системами стабилизации и энергообеспечения.

Жесткое излучение в космическом пространстве по-прежнему будет главным разрушительным фактором для запускаемых в космос аппаратов. Это разрушение связано отчасти с бомбардировкой космических аппаратов протонами больших энергий в радиационных поясах, а также с солнечными вспышками. Исследование эффектов, возникающих при такой бомбардировке, указывает на необходимость изучения сущности механизмов разрушения и определения характеристик материалов, используемых в качестве защитных экранов.

Рис.6. Новые принципы экранирования.
1 - сверхпроводящие катушки; 2 - магнитное поле; 3 - положительный заряд космического аппарата; 4 - поглощающий экран; 5 -плазменная защита.

Разработка новых способов защиты должна включать также исследование возможности экранирования с помощью сверхпроводящих магнитов, что позволит существенно снизить вес защитных устройств и тем самым увеличить полезную нагрузку космических аппаратов, предназначенных для длительных полетов.

На рис.6 иллюстрируется эта новая идея, получившая название плазменной защиты. Для отклонения заряженных частиц, таких, как протоны и электроны, используется комбинация магнитного и электростатического полей. Основой плазменной защиты является образуемое сравнительно легкими сверхпроводящими катушками магнитное поле, которое окружает весь аппарат. На тороидальных космических станциях экипаж и аппаратура располагаются в зоне малой напряженности магнитного поля. Космический аппарат заряжается положительно благодаря инжекции электронов в окружающее магнитное поле. Эти электроны несут отрицательный заряд, равный по величине положительному заряду космического аппарата. Несущие положительный заряд протоны из окружающего аппарат космического пространства будут отталкиваться положительным зарядом аппарата. Электроны, движущиеся в окружающем аппарат пространстве, могли бы разрядить электростатическое поле, однако этому препятствует магнитное поле, искривляющее их траектории.

Зависимость веса таких защитных систем от объема космического аппарата графически представлена в нижней части рис.6. Для сравнения приведены соответствующие веса защитного экрана, представляющего собой слой материала на пути излучения. Так как для управления движением потока электронов требуется магнитное поле весьма умеренной напряженности, то вес плазменной защиты в типичных случаях составит около 1/20 веса обычного поглощающего экрана.

Хотя идея плазменной защиты является многообещающей, с ее работой в условиях космического пространства связано еще много неясного. В связи с этим в настоящее время ведутся теоретические и экспериментальные исследования возможной неустойчивости электронного облака или взаимодействия с пылью и космической плазмой. Пока что не обнаружено никаких принципиальных трудностей, и можно надеяться, что космической радиации можно будет противопоставить плазменную защиту, весовые характеристики которой будут значительно лучше, чем у других типов защиты.

Вход в атмосферу

Обратимся теперь к проблеме входа космических аппаратов в атмосферу Земли и других планет. Основную трудность здесь, безусловно, представляет защита от тепловых потоков, возникающих в процессе входа в атмосферу. Колоссальная кинетическая энергия космического аппарата должна быть преобразована в другие виды энергии, в основном в механическую и тепловую, так как в противном случае аппарат либо сгорит, либо получит повреждения. Скорости входа космических аппаратов составляют от 7,6 до 18,3 км/сек. При меньших скоростях основную часть теплового потока составляет конвективный тепловой поток, однако при скоростях выше ~ 12,2 км/сек большую роль начинает играть тепловой поток излучения от головной ударной волны. Современные теплозащитные материалы эффективны до скоростей ~ 11 км/сек на аппаратах, имеющих малое аэродинамическое качество, однако при скоростях входа от 15,2 до 18,3 км/сек требуются новые материалы.

Рис.7 помогает понять, почему в будущем для решения задач входа в атмосферу пилотируемых космических кораблей большой интерес представят аппараты, способные развивать значительную подъемную силу. По оси ординат отложено отношение подъемной силы к силе лобового сопротивления L/D (аэродинамическое качество) при гиперзвуковых скоростях, а по оси абсцисс - скорость входа. Первые признаки тенденции увеличения аэродинамического качества видны на примере космических кораблей "Меркурий", "Джемини" и "Аполлон". Ожидается, что в будущем орбитальные полеты вокруг Земли достигнут высоты синхронных орбит. Корабли, входящие в земную атмосферу из этой области космического пространства, будут иметь скорости до 10,4 км/сек (на рис. 7 вертикальная линия с надписью "Синхронные орбиты").

Скорости входа пилотируемых космических кораблей, возвращающихся с других планет, например с Марса, гораздо больше. При надлежащем выборе времени старта и использовании притяжения Венеры они достигают 12,2 - 13,7 км/сек, в то время как при непосредственном возвращении с Марса скорости превышают 15,2 км/сек. Интерес к таким большим скоростям входа связан с большей гибкостью способа непосредственного возвращения с планеты.

Рис 7. Тенденции к увеличению аэродинамического качества космических кораблей и скорости входа в атмосферу Земли.

Для поддержания в разумных пределах перегрузок, испытываемых экипажем корабля при столь больших скоростях входа, необходимо увеличение аэродинамической подъемной силы по сравнению с кораблем "Аполлон". Кроме того, увеличение подъемной силы (правильней сказать, аэродинамического качества L/D) при больших скоростях расширит допустимые коридоры входа, которые для баллистических спускаемых аппаратов сужаются до нуля. С увеличением подъемной силы возрастает также точность маневрирования и приземления. Одна из важнейших фаз полета космических кораблей, обладающих подъемной силой, - заход на посадку и сама посадка. Летные характеристики космических аппаратов с подъемной силой на малых скоростях так сильно отличаются от характеристик обычных самолетов, что для их исследования пришлось построить два летательных аппарата, показанных на рис.8. Верхний аппарат имеет индекс HL-10 , а нижний M2-F2.

Рис. 8. Летательные исследовательские аппараты HL-10 и M2-F2.

Эти аппараты предполагается поднимать на высоту около 14 км с помощью самолетов В-52 и сбрасывать при скоростях полета, соответствующих числу Маха до 0,8. На аппаратах HL-10 и M2-F2 установлены небольшие ракетные двигатели, работающие на перекиси водорода, которые позволяют моделировать переменное аэродинамическое качество. С помощью этих двигателей можно варьировать угол наклона траектории при заходе на посадку, а также запас статической устойчивости, чтобы определить оптимальные летные характеристики будущих пилотируемых космических кораблей аналогичной конфигурации. Корабли такой формы будут иметь вес, близкий к весу космических кораблей будущего. И уже создан корабль похожий на данные модели космических кораблей, это орбитальный космический корабль «Шаттл».

Космический корабль «Шаттл»

Орбитальный космический корабль «Шаттл» способен летать в атмосфере Земли с гиперзвуковыми скоростями. Крылья аппарата имеют многолонжеронный каркас; усиленный монокок кабины экипажа, как и крылья, изготовлен из алюминиевого сплава. Двери грузового отсека выполнены из графито-эпоксидного композиционного материала. Теплозащиту аппарата обеспечивают несколько тысяч легких керамических плиток, которыми покрывают части поверхности, подверженные воздействию больших тепловых потоков.

Заключительные замечания

Я пыталась дать краткий обзор последних достижений в области разработки новых материалов, конструкций и техники входа космических аппаратов в атмосферу. Это позволило указать некоторые направления будущих исследований. И, кажется, я сама немножко узнала о проблемах освоения космоса с помощью космических кораблей на современном этапе развития человечества



Поделиться