Технологическая схема производства сахара из сахарной свеклы. Подготовительный этап производства. Оборудование для производства сахара из свеклы

Технологическая линия производства сахара-песка

из сахарной свеклы

Характеристика продукции, сырья и полуфабрикатов. Сахар – относится к важнейшим компонентам пищевого рациона – углеводам. Последние подразделяются на моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, мальтоза, лактоза), на перевариваемые полисахариды (крахмал, глюкоген) и неперевариваемые полисахариды (пищевые волокна). Моносахариды и дисахариды имеют сладкий вкус и поэтому их называют сахарами. Дисахариды и неперевариваемые полисахариды расщепляются в организме человека с образованием глюкозы и фруктозы. Сахароза легко и полностью усваивается в организме человека, способствует быстрому восстановлению затраченной энергии.

При переработки сахарной свеклы для пищевых целей вырабатывают белый сахар-песок, содержащий не менее 99,75 % сахарозы (в пересчете на сухое вещество) и имеющий цветность не более 0,8 условных единиц. Для промышленной переработки также производят белый с желтым оттенком сахар-песок, содержащий не менее 99,55 % сахарозы (в перерасчете на сухое вещество) и имеющий цветность не более 1,5 условных единиц. Сахар-песок вырабатывается с размерами кристаллов от 0,2 до 2,5 мм.

Качество сахара-песка должно соответствовать требованиям стандарта по органолептическим, физико-химическим и микробиологическим показателям.

Сахар-песок имеет особую ценность благодаря быстроте и легкости его усвояемости и тем самым служит незаменимым источником калорий для людей умственного и физического труда.

Исходным сырьем в отечественной сахарной промышленности является сахарная свекла, корнеплод которой выкапывают и отгружают на переработку. Заготовляемая свекла должна соответствовать требованиям стандарта по показателям физического состояния и нормированного содержания корнеплодов с определенными дефектами (подвяленные, цветущие, поврежденные и др.). Технологические качества сахарной свеклы также зависят от технической спелости свеклы во время уборки, общей загрязненности и важнейших химических показателей – содержания сахарозы и чистоты свекловичного сока.

Следует отметить, что у заготовителей свеклы в процессе хранения происходит ухудшение большинства показателей качества, что в свою очередь снижает эффективность протекания технологических процессов, повышает потери сахарозы, снижает выход и качество готовой продукции . Поэтому оптимальный производственный период переработки сахарной свеклы равен 100 суткам.

Основными полуфабрикатами свеклосахарного производства являются свекловичная стружка, диффузионный сок, сироп, утфель и промытый сахар-песок. Свекловичная стружка – срезы свеклы определенных размеров и формы, полученные путем изрезания корнеплодов в свеклорезках. Диффузионный сок – водный раствор сахарозы и несахаров, извлеченный из свекловичной стружки диффузионным методом. Сироп – насыщенный сахарный раствор, полученный из очищенного сока выпариванием из него воды в выпарной установке. Утфель – масса, состоящая из кристаллов сахарозы и межкристального раствора, образующаяся при уваривании сиропа и оттеков в вакуум-аппаратах . Промышленный сахар-песок – промытые горячей водой кристаллы сахарозы, отделенные от межкристального раствора (оттеков) при центрифугировании утфеля.

В результате переработки сахарной свеклы наряду с основной продукцией (сахар-песок) получают большое количество побочной продукции. При среднем выходе сахара 10…12 % свекловичное производство дает в процентах к массе переработанной свеклы: 80…83 сырого свекловичного жома, 5,0…5,5 мелассы, 10…13 фильтрационного осадка, которые являются ценными вторичными ресурсами .

Свекловичный жом представляет собой обессахаренную свекловичную стружку, оставшаяся после извлечения из нее сахарозы диффузионным методом. Он содержит 0,3 % сахарозы. Жом имеет большую кормовую ценность, однако для увеличения срока хранения требуется его обработка: высушивание или силосование. Эффективность использования жома можно повысить за счет получения из него пектина, пищевых волокон, метана, одноклеточного протеина.

Меласса представляет собой межкристальный раствор, получаемый при центрифугирования утфеля последней кристаллизации. Меласса содержит: минеральные органические вещества, в том числе углеводы; ценные аминокислоты и амиды; катионы щелочных и щелочноземельных металлов; анионы угольной, серной и фосфорной кислот. Около 50 % вырабатываемой мелассы направляется на кормовые цели.

Кроме того, меласса является ценным сырьем для производства этилового спирта, дрожжей, пищевых кислот, растворителей и др.

Фильтрационный осадок содержит углекислый газ, азотистые соединения, безазотистые соединения и минеральные вещества, ряд элементов и других соединений, полезных для питания растений и животных. Однако этот ценный отход свеклосахарного производства до настоящего времени не находит полезного практического применения, он наносит ущерб экологии природной среды при накапливании в отвалах.

Особенности производства и потребления готовой продукции. Сахарные заводы размещаются в местах выращивания сахарной свеклы. Современный свеклосахарный завод – это крупное промышленное предприятие, которое в зависимости от проектной мощности может перерабатывать от 1,5 до 6 тысяч тонн сахарной свеклы в сутки.

После распада СССР на территории России осталось 95 свеклосахарных заводов. В новых экономических условиях эти предприятия существенно сократили выработку сахара, так как объем перерабатываемой свеклы уменьшился в 2 раза. При этом возросли объемы переработки импортного тростникового сахара-сырца.

В настоящее время резко сократились площади посева и объем заготовки сахарной свеклы. Основные производственные фонды сахарных заводов имеют значительный износ.

Восстановление и дальнейшее развитие отечественного свеклосахарного комплекса зависит от решения проблем по созданию производства, конкурентоспособного на мировом рынке. При этом придется учитывать, что около 80 % конструкторско-исследовательской и машиностроительной базы осталось на Украине.

Особенности производства сахара-песка из сахарной свеклы обусловлены тем, что готовая продукция практически чистая сахароза. Такой химический состав продукции достигается тем, что почти на всех стадиях технологического процесса выполняются операции очистки исходного сырья и полуфабрикатов от загрязнений и посторонних примесей. Большинство операций связано с обеспечением чистоты наружной поверхности корнеплодов свеклы, диффузионного сока, а также кристаллов белого сахара.

Наружную поверхность корнеплодов сахарной свеклы очищают от легких (плавающих) и тяжелых (камни, песок и др.) примесей. Значительная часть примесей отделяется при транспортировании свеклы на переработку в потоке свекловодяной смеси. Загрязнения, прочно связанные с поверхностью корнеплодов, отмывают при помощи механических рабочих органов в моечных машинах.

Вода является наиболее материалоемким отходом производства . Количество воды при прямоточной схеме ее использования (без повторного и оборотного) составляет около 1800 % к массе перерабатываемой свеклы. Промышленные сточные воды требуют специальной очистки, чтобы исключить отрицательное воздействие на окружающую среду.

В связи с полной механизацией уборочных и погрузочно-разгрузочных работ значительно увеличились загрязнения свеклы землей и зеленой массой. Свекла с повышенной загрязненностью значительно увеличивает объем транспортных перевозок, расход транспортерно-моечной воды и нагрузку на очистные сооружения , снижает производительность при переработке свеклы, что в конечном счете приводит к дополнительным затратам и снижению конкурентоспособности производства.

Следует отметить, что при всех дополнительных усилиях не удается получить свеклу с необходимой для прогрессивной технологии чистотой наружной поверхности, что приводит к износу оборудования. В частности, в СССР были прекращены серийный выпуск и практическое применение дисковых свеклорезок. Среди известных типов свеклорезок именно дисковые потребляют меньше энергии и производят свекловичную стружку хорошего качества. Для надежной работы дисковых свеклорезок требуется более высокий уровень чистоты свеклы, но это не препятствует их широкому применению на передовых зарубежных сахарных заводах.

Диффузионный сок содержит примерно 16…19 % сухих веществ из них 14…17 % сахарозы и около 2 % несахаров. Все сахара в большей или меньшей степени затрудняют получение кристаллической сахарозы и увеличивают ее потери с мелассой. Одна часть несахаров при кристаллизации способна удерживать в растворе 1,2…1,5 части сахарозы. Поэтому одной из важнейших задач технологии сахарного производства является максимальное удаление несахаров из сахарных растворов.

В состав несахаров входят многочисленные вещества: органические кислоты, белки, пектины, жиры, редуцирующие вещества (продукты разложения сахарозы в водных растворах на глюкозу и фруктозу под действием ионов водорода или ферментов), красящие вещества и др. Несахара обладают широким спектром физико-химических свойств, что обусловливает различную природу реакций, приводящих к удалению их из диффузионного сока.

Последовательность основных этапов физико-химической очистки диффузионного сока следующая: предварительная дефекация, основная дефекация, I сатурация, II сатурация, отделение осадка, сульфитация.

Дефекация – процесс обработки диффузионного сока известью (известковым мелом). Целью предварительной дефекации являются коагуляция и осаждение под действием дегидратирующих свойств ионов, белков, пектиновых и других веществ коллоидной дисперсности, а также образование хорошей структуры осадка. Кроме коагуляции и осаждения белково-пектинового комплекса, на предварительной дефекации происходит реакция нейтрализации кислот и осаждения солей кальция. Главной задачей основной дефекации является разложение амидов кислот, солей аммония , редуцирующих веществ, омыление жиров, а также создание избытка извести, необходимой для получения достаточного количества осадка СаСО3 на I сатурации.

Сатурация – процесс обработки дефекованного сока сатурационным газом, содержащим диоксид углерода (СО2). В результате чего образуются кристаллы карбоната кальция, на поверхности которых в свою очередь адсорбируются частицы несахаров. После I сатурации осадок карбоната кальция с адсорбированными несахарами и коагулятом отделяют отстаиванием или фильтрованием и выводят в отходы. Затем в сок добавляют известь и проводят II дефекацию. На II сатурации в результате химических реакций на поверхности образующегося осадка СaCO3 осаждаются соли кальция и другие несахара. После этого снова от сока отделяется сатурационный осадок.

Сульфитация – процесс обработки сока или сиропа сернистым газом или сернистой кислотой. Сульфитация проводится с целью снижения вязкости сахаросодержащих растворов и понижения их окрашенности. Сульфитированный сироп фильтруют для отделения осадка.

Количество несахаров в исходном сырье существенно влияет на эффективность процесса очистки сока: чем их больше, тем труднее добиться требуемой чистоты, т. е. массовой доли сахарозы в пересчете на сухие вещества. Соотношение между количествами сахарозы и несахаров в свекле зависит от ее технологических свойств. В частности, цветущие корнеплоды имеют пониженное (на 2…3 %) содержание сахарозы и повышенное количество редуцирующих веществ. Чистота свекловичного сока в подвяленных корнеплодах ниже на 4…12 %, чем у нормальной свеклы. Из корнеплодов с сильными механическими повреждениями при гидроподаче на переработку вымывается в транспортерно-моечную воду до 0,16…0,30 % сахарозы. При наличии зеленой массы на корнеплодах снижается чистота диффузионного сока на 1,7…2,6 %. Естественно, что при хранении перечисленных дефектных корнеплодов ухудшение показателей их качества происходит более интенсивно, чем у нормальной свеклы. Таким образом, заготовка и переработка свеклы ухудшенного качества приводит к потерям сахара и, в конечном счете, снижает конкурентоспособность свеклосахарного производства.

Сахароза хорошо растворяется в воде, при повышении температуры ее растворимость возрастает. В растворах сахароза является сильным дегидратором. Она легко образует пересыщенные растворы, кристаллизация в которых начинается только при наличии центров кристаллизации. Скорость этого процесса зависит от температуры, вязкости раствора и коэффициента пересыщения.

Кристаллизация позволяет из многокомпонентной смеси веществ, которой является сироп, получить практически чистую сахарозу.

Технологическая схема предусматривает столько ступеней кристаллизации, чтобы суммарный эффект кристаллизации (разность чистоты исходного сиропа с клеровкой и мелассы) составлял 30…33 %. Обычно заводы работают по схемам с двумя или тремя кристаллизациями, при этом товарный продукт получают только на первой степени. Двухкристаллизационная схема проще и экономнее трехкристаллизационной, но при ее эксплуатации не всегда достигается достаточно полное обессахаривание мелассы и получение сахара-песка высокого качества.

Товарный сахар-песок высушивается до нормативной влажности 0,04 % при бестарном хранении и 0,14 % при упаковывании в мешки и пакеты.

Хранение сахара на свеклосахарных заводах усложняется тем, что вся продукция вырабатывается в течение нескольких месяцев, после чего ее приходится хранить продолжительное время. Для эффективного использования емкости сахарного склада мешки с сахаром укладывают в штабеля. Для штабелирования мешков применяются различные передвижные подъемники. Обычно под мешки подкладывают деревянные решетки, поддерживающие их на высоте около 100 мм от пола и обеспечивающие хорошую вентиляцию воздуха под ними. Для правильного хранения сахара в складе нужно обеспечить соответствующий температурный и влажностный режим.

Силоса бестарного хранения сахара должны иметь конструкцию, исключающую возможность образования влаги на их внутренних поверхностях. Такой склад должен быть оборудован системой кондиционирования, а также ас­пирации, обеспечивающей очистку отсасываемого воздуха до взрывобезопасной концентрации сахарной пыли.

Для доставки потребителям неупакованного сахара используют вагоны специальной конструкции (хоппера).

Стадии технологического процесса. Производство сахара-песка из сахарной свеклы можно разделить на следующие стадии и основные операции:

– транспортирование и предварительная очистка свеклы;

– мойка свеклы;

– изрезывание свеклы в свекловичную стружку;

– извлечение сока из свекловичной стружки;

– физико-химическая очистка диффузионного сока;

– выпаривание сока и очистка сиропа;

– уваривание утфеля, кристаллизация сахарозы и отделение утфеля (центрифугирование);

– сушка, охлаждение, сортирование и упаковка сахара-песка.

Характеристика комплексов оборудования. Линия начинается с комплекса оборудования для транспортирования и очистки наружной поверхности свеклы, в состав которого входят системы гидротранспортеров, свеклонасос, ботвосоломоловушки, камнеловушки, водоотделитель, свекломойка и магнитный сепаратор, а также оборудование для отбора хвостиков свеклы.

Следующий комплекс оборудования предназначен для получения и обработки свекловичной стружки, включающий весы, свеклорезку, диффузионный аппарат, мезголовушки и оборудование для отжима влаги от свекловичного жома.

В третий комплекс оборудования для физико-химической обработки диффузионного сока и отделения осадков входят аппараты для дефекации и сатурации сока, подогреватели, дозаторы известкового молока, отстойники, сульфитаторы и фильтры.

Четвертый комплекс оборудования предназначен для выпаривания диффузионного сока и очистки сиропа, содержащий в своем составе четырехкорпусную выпарную установку с концентратором, сульфитатор сиропа и фильтр сиропа.

Ведущим является комплекс оборудования для уваривания сиропа, кристаллизации сахара, отделения утфеля и промывки кристаллов сахара. Основным оборудованием этого комплекса является вакуум-аппараты утфеля, утфелемешалки, утфелераспределители, центрифуги, аффинационная мешалка, сборники оттёков утфелей и мелассы, а также вибротранспортер для промытого сахара-песка.

Завершающий комплекс оборудования для получения товарного сахара-песка включает элеватор, сушильно-охладительную установку, сортировочную установку для сахара, приемные бункеры сахара-песка, а также циклоны сухой и влажной очистки воздуха от сахарной пыли и мешалку для растворения сахарной пыли и комков сахара-песка.

Машинно-аппаратурная схема линии производства сахара-песка из кондиционной сахарной свеклы показана на рис. 2.8.

Устройство и принцип действия линии. Свекла из склада краткосрочного хранения (бурачной) 1 в виде свекловодяной смеси в соотношении 1: 6…1: 7 подается в главный гидротранспортер, состоящий из нижнего и верхнего участков. Нижний гидротранспортер 2 заглублен в земле с уклоном в сторону свеклоподъемной станции. На входе в главный гидротранспортер для предотвращения заторов уста­новлены наклонная и горизонтальная решетки 3 . В конце гидротранспортера установлен регулятор потока – пульсирующий шибер 4 .

Из нижнего участка гидротранспортера свекловодяная смесь перекачива­ется свеклонасосом 5 в верхний гидротранспортер 6 , размещенный на высоте более 20 м. Дальнейшее перемещение ее для выполнении различных технологических операций происходит за счет силы тяжести. При движению по металлическому гидравлическому транспортеру корнеплоды подвергаются очистке попеременно в ботвосоломоловушках и камнеловушках. Лег­кие примеси улавливаются в ботвосоломоловушках 7 и 9 , а тяжелые в камнело­вушках 8 и 10 .

Далее свекловодяная смесь проходит через дисковый водоотделитель 11 , где корнеплоды освобождаются от транспортерно-моечной воды, обломков свеклы, песка и мелких свободных примесей и подаются в свекломойку 12 для отмывания от земли и других прилипших примесей. Количество примесей составляет при ручной уборке 1…3 % к массе свеклы, а при механизированной уборке комбайнами 8…10 % и более.

Количество воды, подаваемой на мойку свеклы, зависит от степени ее загряз­ненности, конструкции машины и в среднем составляет 60% к массе свеклы. Из мойки корнеплоды поступают на свеклоополаскиватель 13 , где производится окончательный смыв грязи с поверхности свеклы и очистка ее от посторонних примесей. Из свеклоополаскивателя кор­неплоды поступают на второй водоотделитель 14 , где от них отделяют моеч­ную воду и ополаскивают хлорированной водой, подаваемой через форсунки, и направляют на элеватор 15 .

В сточные воды гидравлического конвейера и моечной машины попадают отломившиеся хвостики светлы, небольшие кусочки и мелкие корнеплоды (всего 1...3 % к массе свеклы), поэтому транспортерно-моечная вода с обломками свеклы из водоотделителей подается в ротационный хвостикоулавливатель 16 . Отде­ленные в улавливателе обломки свеклы, солома и ботва поступают в классифи­катор хвостиков 17 . Здесь обломки свеклы отделяются от соломы и ботвы и на­правляются на свеклоополаскиватель 18 , а из него подаются насосом на элева­тор и перерабатываются вместе со свеклой. Растительные примеси сбрасыва­ются на конвейер 19 .

Отмытая свекла поднимается элеватором 15 на контрольный конвейер 20 с электромагнитным сепаратором 21 для улавливания ферромагнитных при­месей и поступает на автоматические весы 22 , расположенные над свеклорезками. Взвешенная на автоматических весах свекла выгружается в бункер-накопитель 23 .

Свекла из бункера-накопителя подается в свеклорезку 24 для получения свекловичной стружки. Для хорошего экстрагирования свекловичного сока из стружки она должна быть гладкой, упругой и без мезги. Хорошая свекловичная стружка представляет собой длинные и тонкие полоски свеклы желобчатого, прямоугольного или ромбовидного сечения толщиной 0,5…1 мм.

Свекловичная стружка конвейером 25, на котором установлены автоматические ленточные весы 26 , направляется в непрерывно-действующий диффузионный аппарат 27 . В качестве питательной воды используются сульфитированные аммиачные конденсаты или барометрическая вода из сборника 29 , а также очищенная жомопрессовая вода из сборника 28 .

В корнеплодах сахарной свеклы содержится 20...25 % сухих веществ, из них содержание сахарозы колеблется от 14 % до 18 %.

Сахароза, растворенная в клеточном соке, может быть извлечена из клеток только после денатурации (свертывания) протоплазмы с ее полупроницаемой оболочкой. Поэтому для нормального протекания диффузионного процесса свекловичную стружку предварительно нагревают до температуры 70…80 °С.

Сахар извлекается из клеток ткани корнеплода противоточной диффузией, при которой стружка поступает в головную часть аппарата 17 и движется к хвостовой части, отдавая сахар путем диффузии в движущуюся на­встречу экстрагенту высолаживающую горячую воду. Из конца хвостовой части аппарата выводится стружка с малой концентрацией сахара, а экстрагент, обогащенный саха­ром, выводится как диффузионный сок. Из 100 кг свеклы получают приблизительно 120 кг диффузионного сока. В сок попадает 1,5…3 г/л мезги, которую отделяют в мезголовушке 32 , затем подают в сборник 33 .

Выгружаемый из диффузионного аппарата жом поступает в шнек-водоотделитель 30 и подается в отжимной пресс 31 , затем – на сушку и бункерирование. В среднем количество жома, удаляемого из аппарата 27 , составляет 80 % к массе свеклы.

Диффузионный сок подается из сборника 33 на физико-химическую очистку, которая состоит из ряда последовательных стадий. Предварительная дефекация осуществляется в аппарате 34 , куда кроме сока подается известковое молоко и суспензия сока II сатурации для формирования осадка несахаров. Из преддефекатора сок поступает на первую ступень основной дефе­кации в аппарат 35 , где смешивается с известковым молоком для проведения реакции разложения несахаров. Известковое молоко в количестве, соответст­вующем расходу поступающего сока, подается из мешалки известкового моло­ка 36 дозаторами 37 .

После первой ступени основной дефекации сок поступает в сборник 38 и насосом подается в подогреватель 39 , где нагревается до 85…90 °С и направляется в дефекатор 40 на вторую (горячую) ступень основной дефекации. В переливную коробку дефекатора добавляется известковое молоко для повышения фильтрационных свойств осадка сока I сатурации. Из дефека­тора 40 сок поступает в циркуляционный сборник 41 , где смешивается с 5…7-кратным количеством рециркуляционного сока I сатурации, в аппарате 42 подвергается I сатурации и самотеком поступает в сборник сока I сатурации 43 . Далее, пройдя подогреватель 44 , сок перекачивается насосом в напорный сборник 45 , расположенный над листовыми фильтрами 46 .

46 через мешалку 48 и напорный сбор­ник 49 подается в вакуум-фильтры 50 . Фильтрат отводится из вакуум-фильтров через вакуум-сборник 51 в сборник фильтрованного сока I сатурации 47 . Обра­зующийся фильтрационный осадок поступает в мешалку 52 , а из нее направляется на поля фильтрации.

Фильтрованный сок I сатурации, нагретый в подогревателе 53 до темпе­ратуры 92…95 °C, подается насосом в дефекатор 54 на дефекацию перед II сату­рацией. Во всасывающий трубопровод насоса вводится известковое молоко. Из дефекатора сок самотеком поступает в аппарат 55 на II сатурацию, обрабатыва­ется там диоксидом углерода и направляется в сборник 56 , откуда насосом пе­рекачивается в напорный сборник 57 , расположенный над листовыми фильтратами 58 .

Рис. 2.8. Машинно-аппаратурная схема линии производства сахара-песка из сахарной свеклы

Сгущенная суспензия из фильтров 58 подается в мешалку 59 , откуда перекачивается на преддефекацию. Фильтрат из листовых фильтров поступает в сборник 60 . После фильтров сок II сатурации сульфитируется диоксидом серы в сульфитаторе 61 и собирается в сборнике 62 , откуда насосом подается для кон­трольной фильтрации на фильтр 63 . Фильтрованный сок II сатурации собирается в сборнике 64 .

Сгущение сока ведут в два этапа: сначала его сгущают на выпарной установке до содержания сухих веществ 65 % (при этом сахароза еще не кристаллизуется), а затем после дополнительной очистки вязкий сироп на вакуум-аппарате сгущают до содержания сухих веществ 92,5...93,5 % и получают утфель.

На первом этапе сок направляется насосом через три группы подогревателей 65 в корпус 66 выпарной установки. Она предназначена для последовательного сгущения сока второй сатурации до концентрации густого сиропа; при этом содержание сухих ве­ществ в продукте увеличивается с 14% в первом корпусе до 65...70 % (сгущенный сироп) в последнем. Свежий пар поступает только в первый корпус, а последующие корпуса обогреваются соковым паром предыдущего корпуса.

Из I корпуса сок проходит последовательно II корпус 68 , III корпус 69 , IV корпус 70 и концентратор 71 , сгущаясь до определенной плотности. Выпарен­ная из сока часть воды в I корпусе образует вторичный пар, который использу­ется для обогрева последующего корпуса и т. д. Образующийся в выпарных ап­паратах конденсат отводится через конденсатные колонки 67 в сборники кон­денсата.

Из выпарной установки полученный сироп поступает в сборник 72 , отку­да насосом подается в сульфитатор 73 . В сульфитатор также подается клеровка (раствор сахара II кристаллизации и сахара-аффинада). Сульфитированный си­роп с клеровкой направляется в сборник 74 . Затем смесь подогревается в по­догревателях 75 и направляется в напорный сборник 76 , откуда подается для фильтрации в фильтр 77 и поступает в сборник 78 . Фильтрованная смесь насосом направляется в сборник 79 перед вакуум-аппаратами.

Из сборника 79 смесь поступает в вакуум-аппарат 80 и уваривается до со­держания сухих веществ 92,5 %. Таким образом, сироп уваривается до пересыщения, после введения сахарной пудры сахароза выделяется в виде кристаллов и образуется утфель I кристаллизации. Он содержит около 7,5 % воды и 55 % выкристаллизовавшегося сахара. Утфель I кристаллизации (утфель I) спускают в приемную утфелемешалку 81 . Из нее утфель поступает через утфелераспределитель 82 в центрифуги 83 , где под действием центробежной силы кристаллы сахара отделяются от межкристального раствора. Этот раствор называется первым оттёком. Чистота первого оттека 75%, что значительно ниже чистоты утфеля.

Чтобы получить из центрифуги белый сахар, его кристаллы промывают неболь­шим количеством горячей воды – пробеливают. При пробеливании часть сахара растворяется, поэтому из центрифуги отходит оттёк более высокой чистоты – второй оттёк. Первый оттёк направляют в сборник 84 , второй – в сборник 85 .

Из центрифуги 83 промытый сахар-песок влажностью 0,8…1 % выгружают на вибротранспортер 86 , элеватором 87 поднимают в сушильно-охладительную установку 88 ,и высушивают горячим воздухом температурой 105…110 °С до влажности 0,14 %.

Готовый сахар-песок содержит комки и ферромагнитные примеси. Последние удаляют с помощью электромагнитного сепаратора, подвешенного над ленточным конвейером 89 . В сортировочной установке 90 отделяют комки, а сахар-песок по размеру кристаллов разделяют на фракции и подают в бункера 91 , расположенные в упаковочном помещении.

Воздух, отсасываемый вентилятором из сушильно-охладительной уста­новки, очищается от сахарной пыли в циклоне сухой очистки 92 и в циклоне влажной очистки 93 . Уловленная сахарная пудра и комки сахара-песка растворяются соком II сатурации в мешалке 94 , и далее раствор поступает в клеровочную мешалку 104 .

Первый и второй оттёки, полученные при центрифугировании утфеля I, перекачивают соответственно в сборники перед вакуум-аппаратами 95 и 96 . Утфель II кристаллизации (утфель II) уваривают из второго и первого оттёков утфеля I в вакуум-аппаратах 97 до содержания сухих веществ 93 %, в том числе около 50 % кристаллического сахара. Утфель II спускают в приемную утфелемешалку 98 и опрыскивают горячей водой. Через утфелераспределитель 99 утфель направляют в центрифуги 100 , где он центрифугируется с отбором двух оттёков, которые направляют в сборники 101 и 102 . Из центри­фуг сахар II кристаллизации шнеком 103 подается в клеровочную мешалку 104 , где он растворяется (клеруется) в фильтрованном соке II сатурации. Затем кле­ровку направляют на сульфитацию совместно с сиропом.

Для уваривания утфеля III кристаллизации (утфель) в вакуум-аппаратах 108 последовательно забирают второй и первый оттёки утфеля II кристаллизации из сборников 105 и 106 и аффинационный оттёк из сборника 107 . Содержание сухих веществ в утфеле III доводят до 93,5…94 %. Через прием­ную утфелемешалку 109 его спускают в кристаллизационную установку 110 , где проводят дополнительную кристаллизацию сахара при искусственном охлаждении утфеля. В последней утфелемешалке кристаллизационной установки утфель для снятия избыточного пересыщения межкристального раствора нагре­вают на 5…10 °С и через утфелераспределитель 111 подают в центрифуги 112 , где его центрифугируют без промывания сахара водой с отбором одного оттёка мелассы в сборник 113 . Мелассу из сборника направляют через напорный сборник 114 на весы 115 , взвешивают и перекачивают в емкости на хранение.

Сахар III кристаллизации смешивают в аффинаторе 116 с первым оттёком утфеля I кристаллизации, получая аффинационный утфель с содержанием су­хих веществ 89…90 %. Аффинационный утфель центрифугируют на центрифугах 117 отдельно от утфеля II кристаллизации. Сахар-аффинад промывают горячей водой, отбирая два оттёка вместе, и направляют их в сборник 118 , откуда пере­качивают в сборник 107 для уваривания утфеля III кристаллизации. Сахар-аффинад подают шнеком 103 в клеровочную мешалку 104 и растворяют фильт­рованным соком II сатурации вместе с сахаром II кристаллизации.

Сахар — пищевой продукт, состоящий из сахарозы высокой степени чистоты.

Сахароза имеет приятный сладкий вкус. В водных растворах сладость ее ощущается при концентрации около 0,4%. Растворы, содержащие свыше 30% сахарозы, приторно-сладкие. Энергетическая ценность 100 г сахара составляет 1565-1569 кДж (374 ккал).

Сахароза быстро и легко усваивается. В организме под действием ферментов она расщепляется на глюкозу и фруктозу. Сахароза используется организмом человека как источник энергии и материал для образования гликогена, жира, белково-углеродных соединений.

Сырьем для выработки сахара служат сахарный тростник, произрастающий в районах с тропическим и субтропическим климатом, и сахарная свекла (около 45%). Для производства сахара используют также сорго, кукурузу, пальму. Отечественная промышленность вырабатывает из сахарной свеклы сахар двух видов: сахар-песок и сахар-рафинад.

Товарный сахар должен практически полностью состоять из сахарозы. Свободные примеси не допускаются, но в процессе производства несахара могут адсорбироваться внутри кристаллов сахарозы и на их поверхности в виде тонкой пленки. Кроме того, во всех видах сахара присутствуют минеральные веществ (Na, К, Са, Fe) — около 0,006%.

Сахар-песок представляет собой сыпучий продукт, состоящий из кристаллов сахарозы. Получают его из веретенообразных, белого цвета корнеплодов сахарной свеклы.

Основные стадии производства сахара-песка

Свеклу моют, измельчают в стружку (в узкие тонкие пластины) и обрабатывают в диффузионных барабанах горячей водой. Переход сахара и растворимых несахаров из свеклы в воду совершается вследствие диффузии. Диффузионный сок очищают от механических примесей и несахаров и обрабатывают известковым молоком (водной суспензией оксида кальция) для нейтрализации кислот, осаждения солей алюминия, магния, железа и коагуляции белков и красящих веществ (дефекация).

Для осажчения избытка извести и виде мелкокристаллического углекислого кальция, на поверхности частиц которого адсорбируются несахара, сок обрабатывают диоксидом углерода (сатурация). На следующей стадии сок сгущают путем выпаривания, затем следует кристаллизация сахара из сиропа — образование утфеля и отделение кристаллов сахара от межкристальной жидкости (зеленой патоки). Кристаллы сахара промывают водой и отделяют их от межкристальной жидкости (белой патоки); на последней стадии проводят сушку, охлаждение и освобождение кристаллов от ферромагнитных примесей и комков сахара.

Товарный получают только при уваривании утфеля 1-й кристаллизации.

Белая и зеленая патоки, полученные при центрифугировании утфеля 1-й кристаллизации, поступают на уваривание утфеля 2-й кристаллизации. При центрифугировании утфеля 2-й кристаллизации получают также два оттека (белая и зеленая патока) и сахар 2-й кристаллизации. Он удерживает на своей поверхности пленку межкристального раствора, поэтому окрашен в интенсивно желтый цвет.

Для уваривания утфеля 3-й кристаллизации используют второй и первый оттеки утфеля 2-й кристаллизации. Получаемый в результате сахар 3-й кристаллизации наравне с сахаром 2-й кристаллизации используется на уваривание утфеля 1-й кристаллизации. Оттек, отбираемый при центрифугировании утфеля 3-й кристаллизации, называется мелассой, она является отходом производства.

Качество сахара-песка определяют по ГОСТ 21-94. Из орга- полептических показателей оценивают: вкус и запах - сладкий, без посторонних привкусов и запахов, как сухого сахара, так и его растворов; сыпучесть - без комков, сыпучий, предназначенный для промышленной переработки, может иметь комки, разваливающиеся при легком нажатии; цвет товарного сахара-песка — белый, для промышленной переработки — белый с желтоватым оттенком; чистоту раствора — раствор сахара прозрачный или слабо опалесцирующий, без нерастворимого осадка, механических или других посторонних примесей.

По физико-химическим показателям (в пересчете на сухое вещество) сахар-песок должен соответствовать следующим требованиям (в %): массовая доля сахарозы - не менее 99,75, для промышленной переработки — не менее 99,65; массовая доля редуцирующих веществ - не более 0,050, для промышленной переработки — не более 0,065; массовая доля золы - не более 0,04, для промышленной переработки — не более 0,05; массовая доля влаги - не более 0,14, для промышленной переработки — 0,15; массовая доля ферропримесеи - не более 0,0003; цветность (в условных единицах оптической плотности) — не более 0,8, для промышленной переработки — не более 1,5.

Наиболее распространенные дефекты сахара-песка — увлажнение, потеря сыпучести, наличие нерассыпающихся комочков являются результатом хранения при высокой относи тельной влажности и резких перепадах температуры воздуха. Нехарактерный желтоватый или сероватый цвет и наличие комочков непробеленного сахара появляются при нарушении технологии. Посторонние вкус и запах образуются при упаковке в новые мешки, обработанные эмульсией с запахом нефтепродуктов, а также при несоблюдении товарного соседства; посторонние примеси (окалина, ворс и костра) — результат плохой очистки сахара на электромагнитах и использования для упаковки мешков из плохо обработанной мешковины.

Сахар-рафинад — продукт, состоящий из кристаллической, дополнительно очищенной (рафинированной) сахарозы, выпускаемой в виде кусков и кристаллов. Цель рафинации сахара-песка или тростникового сахара-сырца заключается в том, чтобы в результате последовательного выполнения технологических операций максимально удалить примеси и получить практически чистую сахарозу. По действующему стандарту содержание примесей в сахаре-рафинаде — не более 0,1%. Рафинация — это отделение сахарозы от несахаров путем ее кристаллизации в растворах.

Основные стадии производства сахара-рафинада. Сахар-песок растворяют в воде. Полученный сироп очищают, применяя адсорбенты (активные угли) и иониты, поглощающие из сиропа красящие вещества.

В рафинадном производстве проводят несколько циклов кристаллизации. Сахар-рафинад получают на первых двух или трех циклах, на последующих трех-четырех циклах из паток получают желтый сахар, который возвращают на переработку. Из последнего цикла выводят рафинадную патоку как отход производства.

Для снижения инверсии сахарозы поддерживают слабощелочную реакцию сахарных растворов, а для маскировки желтого оттенка рафинада применяют краситель синего цвета — ультрамарин. Его добавляют в виде суспензии в рафинадный утфель или при промывке кристаллов сахара в центрифугах.

Сахар-рафинад вырабатывается в следующем ассортименте:

  • прессованный колотый насыпью в мешках, пачках и коробках;
  • прессованный быстрорастворимый в пачках и коробках;
  • прессованный в мелкой фасовке;
  • рафинированный сахар-песок насыпью в мешках и пакетах;
  • рафинированный сахар-песок в мелкой фасовке;
  • сахароза для шампанского;
  • рафинадная пудра насыпью в мешках и пакетах.

Кусковой прессованный сахар-рафинад вырабатывается в виде отдельных кусочков, имеющих форму параллелепипеда. Толщина кусочка сахара-рафинада прессованного колотого может быть 11 и 22 мм. Допускаются отклонения от толщины по месту раскола кусочков ±3 мм.

Рафинированный сахар-песок вырабатывают со следующими размерами кристаллов (в мм): от 0,2 до 0,8 — мелкий; от 0,5 до 1,2 — средний; от 1,0 до 2,5 — крупный.

Сахарозу для шампанского вырабатывают в виде кристаллов размером от 1,0 до 2,5 мм.

Сахар-рафинад прессованный получается удалением на центрифугах патоки изутфеля и промыванием кристаллов клерсом (чистым раствором сахара-рафинада). Влажные кристаллы образуют рафинадную кашку. Их грани покрыты тонкой пленкой сахарного раствора. Из кашки на прессах формуют кусочки сахара-рафинада или бруски, которые раскалывают после сушки на кусочки.

Крепость получаемого сахара-рафинада зависит от влажности кашки, которую регулируют количеством оставшегося в ней клерса. Влажность кашки для получения быстрорастворимого сахара-рафинада должна быть 1,6-1,8%, прессованного колотого — 1,8-2,3%. Бруски сахара-рафинада обладают капиллярно-пористой структурой, что способствует их высушиванию. Удаление влаги в процессе сушки вызывает дополнительную кристаллизацию сахарозы, которая была в ней растворена. Чем больше клерса находится в бруске или кусочке прессованного сахара-рафинада (следовательно, и растворенной сахарозы), тем более прочно она соединяет кристаллы в конгломерат и сахар-рафинад получается более крепким.

Качество сахара-рафинада оценивают по ГОСТ 22-94. По органолептическим показателям сахар-рафинад должен соответствовать следующим требованиям: вкус и запах - сладкие, без посторонних привкуса и запаха как сухого сахара, так и его водного раствора; цвет — белый, чистый, без посторонних примесей, допускается голубоватый оттенок; сыпучесть - рафинированный сахар-песок сыпучий, без комков; чистота раствора - раствор сахара прозрачный или слабо опалесцирующий, допускается едва уловимый опалесцирующий оттенок.

Дефекты сахара-рафинада: сероватый оттенок, темные вкрапления и др. — результат недостаточного осветления сиропов, засорения кашки, несоблюдения режимов прессования и сушки.

В Производство сахара из сахарной свеклы в домашних условиях

Разные способы технологии изготовления свекловичного сахара дома с нуля: от подготовки сырья до получения сиропа. Рецепты натуральных русских продуктов для здорового образа жизни теперь доступны всем.

Свекольный сахар: из глубин истории к сегодняшнему дню

Так сложилось исторически, что наибольшее распространение получил сахар, приготовленный из тростника. Такой продукт был весьма дорогостоящим, ведь основные территории, где взращивались плантации растения были далеко за пределами цивилизованной Европы и дикой Руси , а, следовательно, значительную часть в стоимости сладкого вещества играли затраты, связанные с транспортировкой. Доступной альтернативой был, пожалуй, лишь мёд. Однако, уже в XVI веке, благодаря научным изысканиям Андреаса Сигизмунда Маркграфа и некого французского ботаника Ахарда, миру стал известен ещё один способ добычи сахара, из сахарной свеклы. По своим свойствам, сахар, полученный таким образом, не только делает возможным широкое его применение населением, но и имеет ряд преимуществ перед своим тростниковым собратом, а именно: обладает меньшей калорийностью и содержит максимальное количество микро- и макроэлементов, так как не требует рафинации.

Промышленное производство

В России большее распространение в силу вышеупомянутых причин получил именно свекольный сахар.

На фабрику поступает сырьё - свекла. Тщательнейшим образом промывается в специальном моечном цехе и нарезается в однородную стружку. На следующем этапе эта масса подаётся в цистерны, где её заливают горячей водой. Под действием воды происходит отделение от стружки содержащегося в ней сахара и некоторых других веществ, которые, окисляясь, придают соку темный коричневый цвет. Для получения максимальной отдачи от сырья, выщелачивание водой проводят несколько раз. Отходы производства - неоднократно вымоченную стружку отправляют на корм скоту.

На следующем этапе полученный сок очищают от примесей, сначала нагревая до 80 °С - это позволяет избавиться от белковых веществ, а затем в герметичных баках обрабатывая известковым молоком, углекислым и сернистым газами. Нежелательные примеси на этой стадии выпадают в осадок, который остаётся в баках после последующего выпаривания сока. Выпаривание позволяет получить сладкий сироп, который затем проходит фильтрацию и сгущение в специальных ёмкостях. На выходе получают сахарный песок с патокой, которую затем отделят от кристалликов сахара в центрифугах.

Свекольный сахар имеет более тёмный цвет, чем тростниковый, поэтому его в конце промывают водой и сушат.

Получение сахара из свеклы дома

Магазинный сахар вы теперь сможете заменить с помощью настоящих русских продуктов: свекольного рафинада и сладкого сиропа.

Свекольный рафинад

Промойте и очистите от кожуры свеклу. Затем нарежьте её тонкими кольцами и поместите в глиняный горшок. Погрузите ёмкость в духовку пропариться, не допуская при этом пригорания нашей заготовки. Время от времени заглядывайте в горшочек - свекла должна стать мягкой. Затем высыпьте свекольные кружочки на противень и вновь поместите в духовку. Теперь свекла должна просушиться. Для более длительного хранения и улучшения общих свойств нашей свеклы, затем подсушенные колечки лучше слегка поджарить на сковородке. Совсем чуть-чуть - это также несколько улучшит запах.

Для употребления вам осталось только перемолоть в муку эти ломтики, так их вполне можно применять для замены магазинного сахара в кулинарии.

Для чая вам понадобиться эти целые ломти немного обвалять в муке и поджарить на сливочном масле. Вкусно и полезно.

Получение сиропа: первый способ

Очистите от корней и головок и промойте свеклу, не счищая кожицу. Промытые корнеплоды плотными рядами уложите в кастрюлю с уже кипящей водой. Следите за огнём. Свекла должна провариться в кипящей воде. Через 1 час выньте корнеплоды из кастрюли, дождитесь их остывания и снимите кожуру.

Нарежьте свеклу на тонкие пластиночки не толще 1 мм. Измельчённую таким образом её положите под пресс, для получения сока, предварительно завернув в чистый холщовый мешочек. Отжатую массу поместите снова в кастрюлю, залейте горячей водой из расчёта половины объема корнеплодов. Эта заготовка для второго отжима. Дайте ей постоять полчаса, а затем жидкость отцедите в ту посудину, куда собирали сок с первого отжима. Выпаренные жмыхи положите снова в холщовый мешочек и повторите отжимку. Собранный сок нагрейте до 70—80°С, а затем отцедите через свёрнутую в несколько раз марлю.

Последний этап - выпаривание. Сок нужно выпаривать до его полного сгущения в невысоком эмалированном тазу, либо другой плоской посудине.

Получение сиропа: второй способ

Подготовьте, как и в первом способе, свеклу к варке, теперь сняв тонкий слой кожицы. Распаривать необходимо в автоклаве около часа поддерживая давление 1,5 атм. Если нет автоклава, можно воспользоваться котлом, у которого должна быть решётка у дна, однако потребуется больше времени.

Получив мягкую свеклу, её измельчают и дважды пропускают через пресс. Отцеженный сок затем выпаривают, как и в первом способе.

Хранить сироп в прохладном месте, защищенном от прямых попаданий солнечных лучей, как любую консервацию

В кулинарии для выпечки пропорция сиропа к муке составляет примерно 0,75-1: 1. Для приготовления варенья соотношение сиропа к ягодам по массе составляет 2: 1.


Технология производства сахара из свеклы относится к непрерывно-поточному механизированному производству с высоким уровнем автоматизации основных процессов. Особенностью территориального размещения сахарных заводов является их жёсткая привязка к посевным площадям сахарной свеклы

Характеристика и производство сахара

Продукт представляет собой чистый углевод – сахарозу, характеризуется приятным сладким вкусом и высокой усвояемостью. Обладает большой физиологической ценностью, возбуждающе действует на ЦНС, способствуя обострению органов зрения, слуха; является питательным веществом для серого вещества мозга; участвует в образовании жира, белково-углеводных соединений и гликогена.
При избыточном употреблении сахара развиваются ожирение, сахарный диабет, кариес. Суточная норма – 100 г, в год – 36,5 кг, но ее следует дифференцировать в зависимости от возраста и образа жизни.

Технология производства

Сырье: сахарная свекла, импортный тростниковый сахар-сырец. Вырабатывают два вида сахара – сахар-песок и сахар-рафинад.

Классификация и ассортимент

Сахар классифицируется на сахар-рафинад и сахар-песок. Сахар-рафинад в зависимости от способа выработки подразделяется на:
- прессованный;
- рафинированный сахар-песок;
- рафинадная пудра.
Сахар-рафинад вырабатывается в следующем ассортименте:
- прессованный колотый насыпью в мешках, пачках и коробках;
- прессованный быстрорастворимый в пачках и коробках;
- прессованный в мелкой фасовке;
- рафинированный сахар-песок насыпью в мешках и пакетах;
- рафинированный в мелкой фасовке
- сахароза для шампанского;
- рафинадная пудра в мешках и пакетах.

Кусковой прессованный сахар-рафинад производят в виде отдельных комочков, имеющих форму параллелепипеда, толщина куска 11 или 22 мм (3 мм). Рафинированный сахар-песок вырабатывается со следующими размерами кристаллов(мм): мелкий 0,2-0,8; средний 0,5-1,2; крупный 1,2-2,5.
Сахарозу для шампанского вырабатывают в виде кристаллов размерами от 1, 0 до 2,5 мм без подкраски ультрамарином или индигокармином.

Показатели качества сахара

Органолептические: Цвет – белый, чистый, без пятен и посторонних примесей, допускается у сахара-рафинада голубоватый оттенок, у сахара-песка для промышленной переработки – желтоватый.
Вкус у всех видов сахара должен быть сладким, запах – характерным, без посторонних привкусов и запахов (как в сухом сахаре, так и в растворе).
Раствор должен быть прозрачным или слабоопалесцирующим, без нерастворимого осадка, механических или других посторонних примесей.
Сахар-песок должен быть сыпучим, без комков, у сахара-песка для пром. переработки допускаются комки, разваливающиеся при легком нажатии.
Физико-химические показатели: - массовая доля влаги (%, не более): сахар-песок – 0, 14, (сахар-песок для промпереработки – 0,15); сахар-рафинад - от 0,1 для сахара-песка до 0,3 для сахара-рафинада в мелкой фасовке.

Массовая доля сахарозы (в пересчете на сухое вещество, % не менее): сахар-песок – 99,75 (для промпереработки – 99,55); сахар-рафинад – 99,9.
- массовая доля редуцирующих веществ (в пересчете на сухое вещество, % не более): сахар-песок – 0, 05, сахар-песок для промпереработки – 0,065); сахар-рафинад всех видов – 0,03.

Массовая доля мелочи (осколков сахара-рафинада массой менее 25% массы кусочка, кристаллов пудры) для сахара-рафинада прессованного колотого в пачках - не более 2,0%, для быстрорастворимого в пачках – не более 1,5%.

Дефекты и условия хранения

1. увлажнение, потеря сыпучести, наличие нерассыпающихся комочков. Причина – хранение при высокой относительной влажности и резких перепадах температур.
2. нехарактерный желтоватый или серый цвет, наличие комочков непробеленного сахара, примеси. Причина – нарушение технологии.
3. посторонние вкус и запах сахар может приобретать от упаковки, а также вследствие несоблюдения товарного соседства.
Хранение

Упакованные сахар-песок и сахар-рафинад должны храниться на складах, при температуре не выше 40 С и ОВВ не выше 70%, а неупакованный сахар-песок – в силосах при температуре не выше 60 С и ОВВ 60%, не допуская перепадов температур.
Запрещается хранить сахар совместно с другими материалами.

Хранение сахарной свеклы

После проведения технологической оценки сахарной свеклы,она поступает на хранение. Корнеплоды укладывают в кагаты на редварительно подготовленном кагатном поле. Корнеплоды сахарной свеклы - живые организмы, в которых протекают процессы дыхания, а при неправильном хранении может происходить прорастание и загнивание корнеплодов сахарной свеклы. Прорастание характеризуется отношением массы ростков к массе всей свеклы в образце. Прорастание начинается через 5-7 суток после уборки при повышенной
температуре и влажности. Корнеплоды, находящиеся в кагате, прорастают неравномерно: в верхней части в 2 раза больше, чем в нижней. Прорастание - отрицательное явление, так как ведет к потерям сахарозы, в связи с усилением дыхания и увеличения выделения теплоты. Интенсивнее прорастают корнеплоды в невентилируемых кагатах, и те, на которых остались ростовые почки.
Для борьбы с прорастанием удаляют верхушки головки корнеплода при уборке и обрабатывают корнеплоды перед укладкой в кагаты 1%-ым раствором натриевой соли гидразида малеиновой кислоты (3-4л на 1т свеклы). Если головка свеклы низко срезана, или она слегка подвялена, то при укладке в кагаты используют 0,3%-ый раствор пирокатехина (3-4л на 1т свеклы).
Микроорганизмы в первую очередь развиваются на отмерших клетках, механически поврежденных, подмороженных и увядших участках корнеплодов, затем поражаются живые, но ослабленные клетки. Поэтому важным условием предохранения сырья от порчи является его целостность. Необходимо создать благоприятные условия для защитных реакций в ответ на механические и другие повреждения. Для подавления жизнедеятельности микрофлоры на корнеплодах применяют 0,3%-ый раствор пирокатехина, 18-20%-ый раствор углеаммиаката (2-2,5% на 1т свеклы), препарат ФХ-1(1-1,5% к массе обрабатываемой свеклы). ФХ-1 представляет собой суспензию свежего фильтрационного осадка =1,05-1,15г/см, обработанного свежей хлорной известью(1,5% к массе свеклы).

Большое значение имеет температура и влажность как для прорастания, так и для развития микроорганизмов. Поддержание температуры 1-2 С, газового состава воздуха в межкорневом пространстве, влажности с помощью принудительного вентилирования кагатов, ликвидация очагов гниения способствуют сохранению корнеплодов сахарной свеклы от гниения, прорастария. Минимальные потери сырья обеспечивают хранение его на комплексных гидромеханизированных складах.

Гидромеханизированные склады с твердым покрытием, оборудованной системой гидроподачи и вентилирования позволяют резко сократить потери свекломассы и сахара, но и значительно повысить эффективность использования всего комплекса технических средств и операций при разгрузке, складировании, хранении и подачи свеклы в переработку. Механизированные способы возделывания и уборки сахарной свеклы привели к тому, что значительно увеличилась ее загрязненность. За последние годы загрязненность приемного сырья в среднем по России составила 14-16%, в отдельных случаях, превышая 30%.

В поступающей свекле содержится земля, травянистые примеси, ботва и свекловичный бой, которые, попадая в кагат, уплотняют его пространство,ухудшают аэрацию. Кроме того, попавшие в кагат мелочь и бой легко поражаются микроорганизмами, тем самым способствуя массовому гниению сырья.

Одно из радикальных средств снижения загрязненности - гидравлический способ очистки корнеплодов и последующее их хранение в мытом виде. Хорошие результаты обеспечивает установка на буртоукладочной машине устройства для выдувания сорняков, ботвы и соломы. На некоторых сахарных заводах в настоящее время используют способ очистки свеклы с помощью грохотов-очистителей с дальнейшим извлечением свекломассы из отходов очистки.

Заменители сахара

В последнее время отмечается существенное увеличение производства и расширение ассортимента подслащивающих веществ, используемых в качестве заменителей сахарозы. Основной тенденцией при этом является получение подслащивающих веществ более низкой калорийности и более высокой сладости по сравнению с углеводами. Групповой ассортимент заменителей сахара представлен сиропами, сладкими веществами естественного и искусственного происхождения, а также композициями на основе нескольких сладких веществ.

К первой группе относятся: глюкозо-фруктозные, глюкозные, фруктозные и другие сиропы, вырабатываемые из крахмал-фруктозного и сахаросодержащего сырья. К природным заменителям сахара относят полиспирты – сорбит и ксилит. Они обладают сладким вкусом, однако сладость их в 2 раза ниже сладости сахарозы. Энергетическая ценность – 1481 кДж и 1536 кДж соответственно (у сахара – 1565 кДж). Сорбит содержится в плодах рябины, шиповника, яблоках, ксилит получают из хлопковой шелухи, стержней кукурузных початков.

В настоящее время значительную долю рынка занимают искусственные подсластители:
Сахарин – в 500 раз слаще сахарозы, самый дешевый подсластитель, однако имеются данные, что сахарин, цикламаты, дульцин относятся к канцерогенным веществам.
Сукралоза – в 600 раз слаще сахара.
Аспартам (торговая марка «Нутра свит») - в 200 раз слаще сахарозы, калорийность в 10 раз меньше. Разработанный в настоящее время во Франции супераспартам в 55000 раз слаще сахарозы.
К подслащивающим веществам нового поколения относятся вещества белковой природы алитам (в 2000 раз слаще сахарозы) и гемсвит (в 800 раз слаще сахарозы).
Широко используются смеси различных подсластителей, например, сорбита с сахарином, сорбит-ксилит, и др.

Технология производства сахара из свеклы относится к непрерывно-поточному механизированному производству с высоким уровнем автоматизации основных процессов. Особенностью территориального размещения сахарных заводов является их жёсткая привязка к посевным площадям сахарной свеклы, поскольку перевозка свеклы на сколь-нибудь значительные расстояния экономически неэффективна. В ряде случаев, сахарные заводы имеют собственные посевные площади, расположенные непосредственно вблизи предприятия. Отходы сахарной промышленности (жом, барда, дефекационная грязь) могут быть использованы как удобрения, в некоторых случаях - и как корм для скота. Сахар – высококалорийная пища; его энергетическая ценность составляет около 400 ккал на 100г.

Технология производства сахара из свеклы относится к непрерывно-поточному механизированному производству с высоким уровнем автоматизации основных процессов. Особенностью территориального размещения сахарных заводов является их жёсткая привязка к посевным площадям сахарной свеклы, поскольку перевозка свеклы на сколь-нибудь значительные расстояния экономически неэффективна. В ряде случаев, сахарные заводы имеют собственные посевные площади, расположенные непосредственно вблизи предприятия. Отходы сахарной промышленности (жом, барда, дефекационная грязь) могут быть использованы как удобрения, в некоторых случаях - и как корм для скота. Сахар – высококалорийная пища; его энергетическая ценность составляет около 400 ккал на 100г. Он легко переваривается и легко усваивается организмом, то есть служит концентрированным и быстро мобилизуемым источником энергии. С химической точки зрения сахаром можно назвать любое вещество из обширной группы водорастворимых углеводов. В быту же сахаром принято называть обычный пищевой подсластитель – сахарозу, сладкое кристаллическое вещество, выделяемое главным образом из сока сахарного тростника или сахарной свеклы. В чистом (рафинированном) виде сахар белый, а кристаллы его бесцветны.
Буроватая окраска некоторых его сортов объясняется примесью мелассы – сгущенного растительного сока, обволакивающего кристаллы. Возникновение сахарной промышленности в России относится к началу 17 века, когда в Петербурге был построен первый сахарорафинадный завод, перерабатывающий привозной тростниковый сахар – сырец. Их сахарной свеклы сахар стали вырабатывать в России в начале 19 века. На сегодняшний день в России существует 96 сахарных заводов, работающих из которых только 84. На размещение предприятий сахарной промышленности решающее воздействие оказывает сырьевой фактор, т.е. сахарные заводы привязаны к посевным площадям сахарной свеклы, поскольку перевозка свеклы на сколько-нибудь значительные расстояния экономически неэффективна. Лидерами по производству сахара в нашей стране является Белгородская, Тамбовская, Воронежская и Липецкая области. Главный компонент сахара – сахароза. Это дисахарид, состоящий из глюкозы и фруктозы, не обладающие редуцирующими свойствами. В свекле содержится 25-28 % сухих веществ, из них на долю сахарозы приходится в среднем 17,5%. Сахароза растворена в соке, который заполняет вакуум клеток. Основным потребителем сахара в нашей стране остается население (около 55%), примерно 30% выпущенного отраслью продукции потребляется пищевой промышленностью.

Производство и потребление сахара носит сезонный характер. Свекловичный сахар в основном производится в сентябре – октябре после снятия урожая свеклы, сырцовый – в марте – июле. Пик потребления, как правило, приходится на июль, в пору массовых сельскохозяйственных заготовок. В зависимости от технологии производства сахар получается сыпучим или твердым (кусковым, колотым, леденцовым). САХАРНЫЙ ПЕСОК (сыпучий сахар) – его также называют «дробленым», «молотым», «гранулированным» или «сахарным песком» важен в кулинарии больше, чем любой другой: именно его чаще всего используют как подсластитель различных блюд. КУСКОВОЙ, КОЛОТЫЙ, ПИЛЕНЫЙ САХАР. «Кусковым» называют сахар, спрессованный в небольшие кубики. Рафинированный кусковой сахар называют «рафинадом». Кусковой сахар быстро растворяется в горячей воде, поэтому его очень часто подают к чаю. Чуть дольше растворяется в воде «колотый» или «пиленый» сахар – он, в сущности, представляет собой распиленный на маленькие части большой кусок сахара. ЛЕДЕНЦОВЫЙ, КАМЕННЫЙ САХАР внешне очень похожи на карамель (это полупрозрачное очень твердые кристаллы неправильной формы), да и процесс производства этого продукта очень напоминает приготовление «сосалок». Растворяется он гораздо дольше, чем кусковой.

Технология производства сахара

Сахарное производство нашей страны является крупной отраслью пищевой промышленности, объединяющей производство сахара-песка и сахара-рафинада.

Сырьем для производства сахара-песка служат или сахарная свекла, или сахарный тростник. Сахарный тростник принадлежит к семейству злаковых и возделывается на Кубе, в Мексике, Индии, Австралии и других странах с жарким климатом. Сахар, в основном сахароза, содержится в соке стеблей (12…15%) высотой до 4 м и толщиной до 50 мм. С 1 га сахарного тростника получается в два раза больше сахара, чем из свеклы.

Отжатый тростниковый сок очищают, уваривают и выделяют сахар-сырец. Тростниковый сахар-сырец – вещество светло-кремового цвета, массовая доля сахара в котором составляет 97…98%, инвертного сахара 0,6…0,8%, влаги 0,5…0,8%.

Сахарная свекла принадлежит к семейству маревых. Это двухлетнее засухоустойчивое растение. В первый год вырастает корнеплод, в во второй – стебель, цветы и семена. Для производства сахара используют корнеплоды первого года. Масса корнеплода 200…500 г. В корнеплоде массовая доля воды составляет 75%, сухих веществ, которые состоят из сахаров и несахаров. 25%.

Период уборки сахарной свеклы составляет 40…50 сут. Сахарные заводы работают 110…150 сут в году, поэтому около 60% уб-ранной свеклы приходится закладывать на хранение. Хранение осуществляют в трапецеидальных кучах, называемых кагатами.

1. Доставка свеклы на завод и отделение примесей

Для обеспечения бесперебойной работы предприятия на нем создается 1…2-суточный запас свеклы, для чего предусматривают железобетонную емкость, так называемую бурачную, расположенную рядом с главным корпусом.

Из бурачной свекла подается на производство с помощью гидротранспортера – наклонного желоба, по которому свекла транспортируется водой. Подача воды составляет 600…700% от массы свеклы. В свою очередь. свекла содержит 5…15% примесей (ботвы, песка, камней, земли). Поэтому гидротранспортер оснащен песколовушками, ботволовушками и камнеловушками, которые улавливают как всплывшие на поверхность воды вещества (ботву, солому и др.), так и погружающиеся на дно (песок, камни и др.).

2. Мойка, взвешивание и изрезание свеклы

При подаче свеклы с помощью гидротранспортера часть механических примесей отделяется, но остаются примеси в виде прилипшей земли и др. Для их удаления свеклу подают в моечное отделение завода. Процесс мойки должен производиться очень тщательно, так как оставшиеся примеси ухудшают работу свеклорезок и загрязняют диффузионный сок. Для мойки свеклы применяют свекломоечные машины различных типов.

После моечных машин свеклу поднимают в верхнее отделение завода на высоту до 20 м, чтобы обеспечить ее гравитационный спуск на автоматические весы и в свеклорезки. На транспортере свекла очищается от ферромагнитных примесей и подается в бункер автоматических весов для взвешивания.

Сахар из свеклы извлекают диффузионным способом (растворением в воде). Для облегчения извлечения сахара свеклу измельчают в тонкую стружку желобчатой или пластинчатой формы. Толщина пластинок свекловичной стружки не должна превышать 0,5…1 мм, ширина полоски желобчатой стружки – 4…6 мм, пластинчатой – 2,5…3 мм.

Качество свекловичной стружки оказывает решающее влияние на работу диффузионного аппарата, служащего для извлечения сахара из стружки в водный раствор. Качество стружки оценивается длиной 100 г стружки, выраженной в метрах (число Силина), или отношением массы стружки длиной более 5 см к массе стружки менее 1 см (шведский фактор), для чего из определенной массы стружки выделяют частицы длиной менее 1 см и более 5 см. Для качественной стружки число Силина должно быть 9…15 м, а шведский фактор – не ниже 8.

Для изрезания свеклы наиболее распространены центробежные свеклорезки, в вырезах вертикальных цилиндрических корпусов которых неподвижно закреплено 12 или 16 ножевых рам. Свекла поступает во вращающийся ротор-улитку свеклорезки, вращается вместе с ротором, центробежной силой прижимается к ножам и режется. Затем свекловичная стружка по ленточному транспортеру поступает в отделение для получения диффузионного сока.3. Получение диффузионного сока

Целью диффузионного процесса в сахарном производстве является извлечение из свекловичной стружки максимального количества сахарозы. Сахарозу из свеклы извлекают диффузионным способом (экстракцией), который заключается в противоточной обработке свекловичной стружки горячей водой. При этом сахароза и растворимые несахара переходят (диффундируют) в воду, в результате чего их содержание в стружке понижается, а в воде  повышается. Такое движение растворимых веществ происходит под влиянием градиента концентрации. С повышением температуры диффузия ускоряется, поэтому процесс извлечения сахаров проводят при температуре 70…74°С. При более высокой температуре в раствор переходит часть пектиновых веществ. Таким образом, содержание сахаров в стружке в процессе экстракции снижается с 18,3% до 0,3%, а в диффузионном соке – повышается до 13,4%.

На отечественных сахарных заводах процесс извлечения сахарозы из свекловичной стружки осуществляется в непрерывнодействующих автоматизированных диффузионных установках. Длительность процесса диффузии составляет не более 80 мин, так как ее увеличение приводит к повышению содержания растворимых пектиновых веществ в диффузионном соке и его вязкости, а также к ухудшению условий дальнейшей очистки.

При понижении температуры ниже 70°С интенсивно развиваются микроорганизмы. С увеличением расхода воды на обессахаривание стружки снижаются потери сахаров в жоме, но на практике ограничивают его величиной 120…130% от массы стружки, идущей на диффузию, что обусловлено необходимостью экономии топлива, расходуемого на выпаривание лишней воды при сгущении сока.

Диффузионный сок является благоприятной средой для развития микроорганизмов, поступающих вместе со свеклой и водой. Развитие микроорганизмов подавляют улучшением отмывания свеклы, обеспечением чистоты диффузионной установки и питающей воды, а также ритмичной работой. Кроме того, в диффузионный аппарат периодически подают раствор формалина.

В диффузионном соке, выходящем из диффузионного аппарата, содержится много мезги (мельчайших частиц стружки), ухудшающей дальнейшую переработку сока. Поэтому диффузионный сок перед подачей на дальнейшую переработку очищают от мезги.

Обессахаренная стружка (жом) выводится из верхней части диффузионного аппарата и подается в жомовый пресс. Массовая доля сухих веществ в стружке перед прессованием составляет примерно 8%. Жом после прессования в шнековых прессах имеет массовую долю сухих веществ 12…14%, если он в сыром виде будет скармливаться скоту, либо его прессуют до 22…25% сухих веществ и направляют на высушивание до массовой доли сухих веществ 86%. Для сохранения и повышения кормовой ценности жом обогащают добавками и брикетируют. В среднем выход сушеного жома составляет 4,5…5% от массы свеклы.

4. Очистка диффузионного сока

Из свеклы в диффузионный сок переходит почти вся сахароза и до 90% растворимых несахаров. Кроме того, в диффузионном соке содержится много мелких частиц свеклы (мезги), которые на воздухе быстро темнеют и пенятся.

Из такого сока без очистки трудно выделить сахарозу, так как несахара существенно замедляют скорость кристаллизации и увеличивают содержание сахара в отходах (мелассе). Одна часть несахаров удерживает в мелассе до 1,5 частей сахарозы. Чтобы получить максимальный выход сахара-песка и низкий выход мелассы, из диффузионного сока необходимо удалить как можно больше несахаров и довести его до слабощелочной реакции, в которой сахароза наиболее устойчива к разложению.

Производится довольно сложная и многоступенчатая очистка диффузионного сока.

Первой ступенью очистки диффузионного сока является преддефекация. При этом в диффузионный сок добавляют известковое молоко в количестве 0,2…0,3% СаО от массы свеклы равномерно во времени в течение 20…30 мин при температуре 40…60°С. Целью преддефекации является коагуляция (укрупнение) частиц коллоидной дисперсии для выведения их из раствора.
Далее производится основная дефекация. Целью основной дефекации является вторичная обработка диффузионного сока избытком извести сразу же после преддефекации. Основной дефекацией достигаются полное разложение амидов кислот, редуцирующих и пектиновых веществ, солей аммония, омыление жиров, а также создание избытка извести, необходимой для получения достаточного количества карбоната кальция при дальнейшей очистке – на 1-й сатурации. Общее количество активной извести, расходуемой на преддефекацию и основную дефекацию, составляет 2,2…2,5% СаО от массы свеклы. Температура, длительность процесса и доза известкового молока определяются лабораторией в зависимости от качества перерабатываемой в данный момент свеклы.

Сразу же после дефекации производится 1-я сатурация. После основной дефекации нефильтрованный сок, содержащий известь (меньшую часть – в растворе и большую часть – в осадке), поступает на 1-ю сатурацию, где его обрабатывают сатурационным газом (смесью газов, содержащих в большом количестве диоксид углерода). Диоксид углерода (СО2) вступает в реакцию с гидроксидом кальция (Са(ОН)2) и образует карбонат кальция (СаСО3). На положительно заряженной поверхности свежеобразованных кристаллов СаСО3 адсорбируются несахара сока, в том числе продукты распада пектиновых и других веществ, несущих отрицательный заряд.

Таким образом, если на предварительной и основной дефекациях химическая очистка осуществлялась путем коагуляции, осаждения и разложения несахаров, то на 1-й сатурации проводится физико-химическая очистка сока адсорбцией, что и является основной целью 1-й сатурации. Кроме того, образующийся кристаллический осадок СаСО3 служит основой для создания фильтрующего слоя при фильтрации сока.

Образовавшийся осадок СаСО3 с адсорбированными несахарами отфильтровывают.

Нефильтрованный сок 1-й сатурации содержит 4…5% взвешенных частиц, которые необходимо отделить, чтобы продолжить дальнейшую очистку сока. Фильтрование чаще всего производят на листовых саморазгружающихся фильтрах-сгустителях периодического действия. Сок 1-й сатурации на фильтре разделяется на фильтрованный сок и сгущенную суспензию.

Отфильтрованный сок содержит на выходе из фильтра не более 1 г/л твердой фазы и без контрольного фильтрования направляется на 2-ю сатурацию. Сгущенную суспензию сока 1-й сатурации повторно фильтруют в камерных вакуум-фильтрах, на которых осадок промывается горячей водой и просушивается воздухом или паром. Разбавленный сок, получаемый на первой стадии промывки, присоединяют к отфильтрованному соку. Сильно разбавленный сок, получаемый на окончательной стадии промывки осадка, используют в других технологических процессах. В фильтрованном осадке содержится 75…80% карбоната кальция и 20…25% органических и неорганических несахаров. Он используется в сельском хозяйстве для известкования кислых почв. Потери сахарозы в фильтрованном осадке составляют примерно 1% от его массы. На промывку фильтрованного осадка расходуется 105…110% воды от массы осадка.

Тщательно отфильтрованный, чистый сок подвергают ^ 2-й сатурации для того, чтобы перевести оставшиеся после 1-й сатурации в растворе гидрооксиды кальция, калия и натрия в углекислые соли и вывести их в осадок, а также вывести в осадок кальций, связанный с органическими кислотами в комплексы.

Для повышения качества к соку перед 2-й сатурацией добавляют небольшое количество извести (0…0,5% СаО от массы сока), что способствует не только дополнительному разложению несахаров, но и увеличению адсорбционной поверхности в результате большего образования карбоната кальция. Перед 2-й сатурацией сок нагревают до температуры 93…95°С и в течение 10 мин сатурируют (продувают СО2). При сатурировании из сока испаряется более 1% воды, и он охлаждается на 2…5°С. Для дополнительного удаления кальция из раствора сок после сатуратора следует подвергнуть “дозреванию” в течение 10…15 мин при интенсивном перемешивании в отдельном сосуде, что снижает накипеобразование в выпарной установке.

После “дозревания” сок 2-й сатурации фильтруют на листовых фильтрах таким же образом, как и сок 1-й сатурации. Фильтрат направляют на сульфитирование, а сгущенную суспензию – на преддефекацию.

Сульфитацией называется обработка сахарных растворов диоксидом серы (SO2), который получают сжиганием комовой серы на воздухе в специальной печи. В получаемом сульфитационном газе содержится 10…15% SО2, воздуха  85…90%.

Диоксид серы – бесцветный газ с резким запахом, ядовит, вызывает удушье, хорошо растворим в воде, но только небольшая часть растворенного диоксида серы реагирует с водой, образуя сернистую кислоту.

Целями сульфитации являются: обесцвечивание сока, снижение его вязкости, а также обеззараживание. При пропускании сульфида серы через сок образуется сернистая кислота, являющаяся сильным восстановителем. Она частично переходит в серную кислоту; при этом выделяется молекулярный водород, который восстанавливает органические окрашенные вещества. Действие сернистого газа продолжается и при выпаривании, что способствует меньшему потемнению сиропа. Коэффициент использования диоксида серы составляет 70…80%, оптимальное значение рН сульфитированного сока составляет 8,5…8,8.

Повышение урожайности сахарной свеклы и улучшение ее технологического качества

Повышение урожайности сахарной свеклы и улучшение ее технологического качества - важнейшая задача свеклосахарного комплекса.
Решение этой задачи зависит от многих факторов: сорта возделываемой свеклы, качества используемых семян, качества почвы, применяемых агротехнических мероприятий и т. д.

Качество семян является одним из решающих факторов. Поэтому фирмы, занимающиеся производством семян, уделяют их качеству особое внимание, проводя соответствующую обработку семян и осуществляя тщательный их контроль. При этом, наряду с традиционными показателями качества семян (засоренности, всхожести и т. д.), в настоящее время определяются с помощью современного оборудования биологические, физиологические и другие показатели.

Кроме качества семян на урожайность большое влияние оказывает технология возделывания свеклы. В этом направлении в последние годы ведутся интенсивные разработки.

Так, в начале двадцатых годов на Украине В.С. Глуховским с сотрудниками разработан новый, так называемый гребневый способ возделывания сахарной свеклы. Способ заключается в том, что с осени готовят гребни, что способствует в этот период интенсивному накоплению влаги, а весной - ускоренному созреванию почвы в их зоне. В гребни затем высевают семена. (Данная технология подобна технологии при выращивании картофеля.)
Преимуществом такой технологии является то, что вследствие большей поверхности гребня почва весной прогревается гораздо быстрее, что способствует более быстрому росту растений.
На грядках из-за большей рыхлости почвы свекла образует более длинные корешки и тем самым достигнет быстрее слоя почвы, содержащего влагу. На гребнях меньше потери влаги испарением из нижнего слоя. Гребневый способ возделывания свеклы способствует ускорению прорастания семян и росту растений.

Поскольку почва на гребнях менее уплотнена, то свекла образует меньше боковых корешков, ее легче убирать.
Гребневый способ повышает продуктивность сахарной свеклы. Об этом свидетельствует опыт применения этого способа в последние годы в Германии и Италии.

Так, на севере Германии в течение четырех лет при применении данного способа урожайность была примерно на 15% выше. В Италии, которая только начала применять этот способ, урожайность была на 30...45% выше.
Недостаточно широкое распространение данной технологии возделывания свеклы может быть связано с отсутствием необходимого оборудования.
В начальный период для формирования грядок использовалась техника, которая применялась при возделывании картофеля. Однако она не всегда обеспечивала получение устойчивых грядок.

Фирмой Delitzsch в настоящее время разработана техника, позволяющая одновременно формировать 12 грядок и высевать в них семена. Это открывает возможности для более широкой реализации данного способа.
Уборка свеклы. Начало копки свеклы зависит от сроков пуска завода, убрать ее необходимо до наступления морозов. Уборка свеклы проводится поточным (с челночным) способом вывозки корнеплодов на завод или поточно-перевалочным способом. Для снижения потерь массы и сахара при необходимости хранения (более 2...3 суток) корнеплодов на перевалочных площадках в буртах их следует укрывать ботвой или соломой.

Сахар - пищевой продукт, получаемый главным образом из сахарной свеклы и сахарного тростника. Выпускается в виде сахара-песка и сахара-рафинада. Калорийность 100 г сахара - около 400 ккал. Важнейшим показателем качества сахара является его цветность, которая в единицах Штаммера не должна превышать 1.0.
Независимо от сырья ощущение сладости сахара определяется исключительно величиной поверхности кристаллов и, следовательно, быстротой таяния во рту. Медленнотающие крупные кристаллы кажутся недостаточно сладкими, тогда как мелкие и особенно сахарная пудра имеют приторно сладкий вкус.

Сахарная свекла
- двухлетнее растение из семейства маревых. В первый год ее развития из первоначально высеянных семян образуются сочные богатые сахаром корнеплоды с широко разросшимся хвостовиком, боковыми корешками и мощной прикорневой розеткой листьев - ботвой, но без цветков и семян. Именно эти корни после обрезки ботвы (вместе с верхней частью корневой головки), а также удаления хвостовика и части корешков и служат сырьем для свеклосахарного производства. Средняя урожайность корнеплодов 25…40 т/га, на поливных землях Украины - свыше 60 т/га.
Содержание сахара в свекле 16…18% к массе корня, иногда при благоприятных условиях - 20%. Продолжительность вегетационного периода колеблется от 150 до 180 суток. Сумма среднесуточных температур за период вегетации - 2400…2800°С, требуется достаточное увлажнение.

Образование сахара в свекле
происходит путем первоначального синтеза под действием солнечного света простейших углеводов (глюкозы и фруктозы) из углекислого газа и воды в содержащих хлорофилл листьях растений.
Массовую копку корнеплодов проводят со второй половины сентября. Доставленная транспортными средствами свекла до переработки хранится в кагатах (буртах). Для предупреждения гнилостных процессов свекла в кагатах опрыскивается известковым молоком, а в жаркую погоду орошается водой.
Корнеплоды в кагатах продолжают жить, потребляя из воздуха кислород и выделяя углекислый газ, а также пары воды.

Тростниковый сахар -сырец, вырабатываемый в Индии, Бразилии и на Кубе, является продуктом переработки сока, отжимаемого из стеблей сахарного тростника. Содержание сахарозы в соке - 97…98%, а в стеблях тростника - 12…15%, урожай 40…60 т/га.
Отжатый тростниковый сок подвергается химической очистке небольшим количеством извести, фосфорной кислоты и сернистым газом. В отфильтрованном виде поступает на выпарную установку. После сгущения сироп из выпарки уваривают до выделения кристаллов сахара, которые и отделяют на центрифугах в виде сахара-сырца.

Заводы, на которых вырабатывается сахар , представляют собой крупные, оснащенные высокопроизводительной техникой производства. Мощность отдельных свеклосахарных заводов по переработке свеклы достигает 6…9 тыс. т в сутки, а в среднем - 2,5 тыс. т в сутки. Свеклосахарное производство - массовое, поточное. В нем в едином производственном потоке осуществляются основные технологические процессы и промежуточные операции по переработке свеклы с получением одного вида массовой товарной продукции - белого сахара-песка. Побочными видами товарной продукции являются жом и патока-меласса.
Чтобы предохранить сахарозу от разложения, все технологические процессы ведутся при температуре, не превышающей 90…100°С (только в первых корпусах выпарки до 120…125°С), и в щелочной среде (за исключением слабокислой реакции диффузного сока).
Длительность производственного цикла от поступления свеклы до получения белого сахара-сырца не более 12…16 часов, а с учетом переработки всех паток и желтых сахаров в продуктовом отделении - 36…42 часа.

Важнейшими стадиями технологии производства сахара из свеклы являются следующие :
. приемка, хранение и подача свеклы на завод;
. очистка корней свеклы от земли и посторонних примесей;
. измельчение (резание) свеклы в стружку и получение из нее сока диффузным способом; очистка сока; выпаривание воды из сока с получением сиропа; уваривание сиропа в кристаллическую массу - утфель I и последующее
. разделение этой массы путем центрифугирования на белый кристаллический сахар и патоку; уваривание патоки в утфель II, дополнительная кристаллизация его и центрифугирование с получением желтого сахара и конечной патоки-мелассы - отхода производства при работе по схеме с двумя утфелями.

В случае работы по схеме с тремя утфелями патока от утфеля II не является конечной. Она еще раз уваривается на утфель III, из которого после кристаллизации и центрифугирования получается еще один желтый сахар и уже как отход производства - меласса.
Очистка (аффинация) последнего желтого сахара, растворение желтых сахаров в соке (клерование) с возвращением получаемого при этом раствора - клеровки по очистке сиропа.
Кроме этих технологических операций осуществляются вспомогательные процессы: получение необходимых для очистки сока извести и сатурационного (углекислого) газа путем сжигания серы сульфитационного (сернистого) газа для очистки сока и сиропа.
На некоторых заводах осуществляются дополнительные технологические операции, являющиеся как бы продолжением основных процессов производства - сушка свекловичного жома и производство на его основе комбикормов (обогащение жома добавками), получение из мелассы микробиологическим путем лимонной кислоты.
Все технологические операции осуществляются в трех основных отделениях завода: свеклоперерабатывающем, включающем подачу свеклы на завод; сокоочистительном, включающем выпарку и получение извести, сатурационного и сульфатационного газов;продуктовом - варочно-кристаллизационном и пробелочном.

Извлечение сахара из свекловичной стружки
Извлечение сахара из свекловичной стружки производят выщелачиванием теплой водой и диффузионным соком и основано на явлениях диффузии и осмоса через проницаемые стенки клеток сахарной свеклы.
Выщелачивание происходит в диффузионных батареях, состоящих из 12 - 16 диффузоров. Диффузоры, представляющие собой металлические цилиндры емкостью 5-10 м3, снабжены устройствами для загрузки стружки и выгрузки жома. Содержимое диффузоров подогревают циркулирующим по трубам внутри диффузора паром. Температура в диффузоре достигает 60 °С и более. При такой температуре свертывается протоплазма клеток, что облегчает выщелачивание из них сахара.
Выщелачивание сахара в диффузионной батарее осуществляется постепенно. Диффузионный сок, переходя от одного диффузора к другому, постепенно насыщается сахаром, пока содержание сахара в соке не приблизится максимально к сахаристости свеклы.
Первый диффузор батареи загружают стружкой и заливают теплой водой, заполняющей в диффузоре все пространство между стружкой.
Если сахаристость свежезагруженной свекловичной стружки составляет 18% (она может быть и немного больше и меньше), то после выщелачивання водой части сахара и достижения диффузионного равновесия сахар в стружке и воде распределяется поровну и сахаристость стружки и полученного сока становится одинаковой: она составляет 9% (18:2).
Полученный в первом диффузоре сок переводят во второй, загруженный свежей стружкой. По достижении диффузионного равновесия сахар в стружке и соке во втором диффузоре распределяется поровну, и сахаристость сока составляет 13,5% ((18+9)/2).
Из второго диффузора сок переводят в третий, также заполненный свежей стружкой. Сахаристость сока в нем достигает 15,75% ((18+13,5)/2) и т.д. В последнем диффузоре сахаристость сока мало отличается от сахаристости свежей свекловичной стружки.
Так как в стружке в первом диффузоре остается еще 9% сахара (в сок переходит только 9 из 18%, содержащихся в свежей стружке), для извлечения сахара его вторично заливают чистой водой.
По установлению диффузионного равновесия в первом диффузоре вновь получается сок, хотя уже с меньшей сахаристостью: (9:2=4,5%). Этот сок затем переводят во второй диффузор, где сахаристость стружки составляет 13,5%. Диффузионный сок здесь получается с сахаристостью 9% ((13, 5+4,5)/2). Переводя этот сок в третий диффузор, где сахаристость стружки составляет 15,75%, получают сок с содержанием сахара 12,37% и т.д.
Таким образом, когда установлена работа диффузионной батареи, на свежую, свекловичную стружку подают, наиболее концентрированный сок, а на более или менее обессахаренную стружку подают либо сок слабой концентрации, либо чистую воду.
Этим способом удается максимально извлекать сахар из свекловичной стружки и получать диффузионный сок высокой концентрации. Потери сахара в жоме при этом составляют всего 0,2 - 0,25%.
Перемещение сока от одного диффузора к другому осуществляется благодаря небольшому давлению, создаваемому при накачивании воды в первый диффузор.
В последнее время на сахарных заводах получают применение диффузионные аппараты непрерывного действия, заменяющие диффузионные батареи, загружаемые и разгружаемые периодически.
С одной стороны в действующий диффузионный аппарат непрерывно подают свекловичную стружку, которая движется навстречу поступающей с противоположной стороны воде. Непрерывно омывающая стружку вода выщелачивает из нее сахар и постепенно превращается в обогащенный сахаром диффузионный сок, который выводят из диффузионного аппарата. Так же непрерывно из аппарата выводят обессахаренную стружку - жом.

Очистка диффузионного сока
Кроме сахара, в диффузионном соке содержатся (примерно 2%) и другие вещества, называемые несахарами (соли фосфорной и других кислот, белки), а также мелкие взвешенные частицы, придающие соку темный цвет.
Очистку диффузионного сока от взвешенных частиц и значительной части несахаров производят при помощи извести, а для последующего удаления из сока извести применяют углекислоту. Известь и углекислый газ получают на сахарных заводах обжигом известняка (СаСО3=СаО+СО2); его расход составляет 5-6% от веса перерабатываемой свеклы.
Обработку диффузионного сока известью (в виде известкового молока) производят в цилиндрических котлах с мешалками - дефекаторах. Под действием извести несахара коагулируют и осаждаются или разлагаются, образуя кальциевые соли, остающиеся в растворе.
Обработанный известью (дефекованный) сок поступает в сатуратор, где его обрабатывают углекислым газом. Под действием углекислого газа известь превращается в углекислый кальций СаСО3, который, выпадая в осадок, увлекает с собой и несахара.
Обработанный углекислым газом (сатурированный) сок фильтруют на механических фильтрах. При этом от сока отделяется фильтрпрессовая грязь, содержащая углекислый кальций, несахара и незначительное количество сахара (до 1% от веса грязи).
Очищенный диффузионный сок сохраняет темный цвет, устраняемый при последующей обработке сока сернистым газом (его получают сжиганием серы). Процесс обработки сока сернистым газом называют сульфитацией.

Выпаривание сока, уваривание сиропа и получение сахара
Очищенный сок поступает на выпарную установку, где из него удаляют большую часть воды. Сок приобретает концентрацию сиропа (65% сухих веществ, в том числе 60% сахара и 5% несахаров, остающихся в диффузионном соке после его очистки).
Полученный сироп опять отбеливают сернистым газом и фильтруют, после чего уваривают в вакуум-аппаратах. Уваривание сиропа продолжается 2,5 - 3 часа при температуре около 75 °С (под вакуумом). В процессе уваривания происходит кристаллизация сахара. При этом получается продукт, содержащий 55 - 60% кристаллов сахара и называемый утфелем первой кристаллизации. Концентрация сухих веществ в утфеле достигает 92,5% (из них примерно 85% сахара).
Из вакуум-аппаратов утфель спускают в мешалку, а затем направляют в центрифуги, где производится отделение маточного раствора от кристаллов сахара. Отделенный маточный раствор называют зеленой патокой. В ней содержится еще значительное количество сахара, а также не сахара.
После удаления зеленой патоки, оставшийся в центрифуге сахар промывают водой и пропаривают паром. В результате сахар становится белым. При промывке кристаллов сахара в центрифуге образуется жидкость, содержащая растворенный сахар - белая патока. Ее возвращают в вакуум-аппараты для дополнительного уваривания на утфель первой кристаллизации, дающий белый сахар.
Сахар же из центрифуг направляют в сушильный барабан. Высушенный сахар является уже вполне готовым Сахар же из центрифуг направляют в сушильный барабан. Высушенный сахар является уже вполне готовым продуктом - сахарным песком, содержащим до 99,75% чистого сахара, считая на сухое вещество.
Зеленую патоку тоже направляют в вакуум-аппараты для ува-рнвания на утфель второй кристаллизации. При этом получают желтый сахар, идущий главным образом в кондитерскую промышленность. Специальной обработкой желтый сахар можно превратить и в обыкновенный, белый.
После выделения из утфеля второй кристаллизации желтого сахара получают кормовую патоку, или мелассу, являющуюся отходом производства. Выход кормовой патоки составляет около 5% от веса переработанной свеклы.
С учетом потерь сахара в процессе производства (больше всего его теряется в кормовой патоке - 9 - 14% содержащегося в свекле сахара) выход его из свеклы практически составляет 12 - 13%. При этом расход свеклы на 1 т сахара превышает 7 - 8 т.
В процессе сахароварения расходуется много пара и горячей воды, обычно получаемых в заводской котельной установке. Общий расход условного топлива на свеклосахарных заводах (включая и расход на обжиг известняка) составляет 11 - 12% от веса перерабатываемой свеклы.
Свеклосахарное производство характеризуется большим расходом воды на технологические процессы. Он в 20 раз превышает вес перерабатываемой свеклы. С учетом использования оборотной воды, расход свежей воды тоже весьма значителен и достигает 8 т на 1 т свеклы.

Использование отходов
Наиболее ценным отходом свеклосахарного производства является кормовая патока, почти наполовину состоящая из сахара и содержащая также другие питательные вещества. Вследствие этого патоку используют в качестве концентрированного корма для скота (непосредственным скармливанием или в составе комбикормов). Кроме того, кормовую патоку перерабатывают на спирт, дрожжи, лимонную и молочную кислоту и другие продукты.
Особой переработкой из кормовой патоки можно извлечь содержащийся в ней сахар и тем самым повысить общий его выход из свеклы и снизить его себестоимость. Для этой цели на некоторых сахарных заводах построены цехи, в которых производят обессахаривание кормовой патоки.
Другим отходом является жом - лишенная сахара свекловичная стружка. Выгружаемый из диффузоров жом при помощи воды транспортируют в хранилища (жомовые ямы). Жом питателен, и его охотно поедают животные, он используется в животноводстве для откорма скота. При некоторых сахарных заводах имеются и свои скотооткормочные пункты.
Свежий жом содержит до 94% воды. Для повышения транспортабельности, а также кормовой ценности жома его частично обезвоживают и тем самым повышают содержание в нем сухих веществ до 15 - 18%. Для длительного хранения жом высушивают до влажности 10 - 12%, применяя для сушки топочные газы.

Сезонность работы свеклосахарных заводов
Свеклосахарные заводы отличаются резко выраженной сезонностью работы. Сахарная свекла созревает, как правило, во второй декаде сентября. В это время начинают копку и вывозку ее на заводы и переработку. На заводах создают запас свеклы, укладываемой в бурты, который перерабатывают по окончании ее копки и вывозки. При длительном хранении свеклы ее сахаристость значительно снижается. Поэтому на заводах стремятся переработать годовой запас сырья в минимальный срок - 3-4 месяца. Удлинение срока хранения свеклы уменьшает выход сахара из единицы сырья и снижает рентабельность свеклосахарного завода.

Производство сахара-рафинада
Около 20…25% выработанного сахара-песка подвергается рафинированию с целью получения более чистого пищевого продукта в твердом (кусковой рафинад) или рассыпчатом кристаллическом (рафинадный сахар-песок) виде.
Для промышленной переработки (на рафинирование) допускается сахар-песок с влажностью не более 0,15%, содержанием сахаров не менее 99,75% и цветности до 1,8 единиц Штаммера.
Сущность процесса рафинирования сахара заключается в том, что сахар-песок растворяют, полученный сироп очищают и уваривают на кристалл.
После отливки рафинадного утфеля в формы и его охлаждения получают сахар высокой твердости - литой сахар. Крупные куски литого сахара разбивают на более мелкие или распиливают на кусочки правильной формы

Применяют и другой способ производства кускового сахара -прессование полученного из рафинадного утфеля увлажненного сахара-песка в формах. Так получают прессованный сахар, обладающий меньшей твердостью, чем литой.
Жидкий рафинад используется в хлебопекарной промышленности и производстве мороженого.
Цвет рафинада должен быть чисто белым, без пятен, допускается голубоватый оттенок, получаемый путем добавления ультрамарина.
Выход готового сахара-рафинада составляет около 98,5% к массе взятого в производство сахара-песка. Сахаро-рафинадные заводы в Одессе, Сумах и Черкассах работают круглый год.

В Украине основное производство сахара сосредоточено в Винницкой, Хмельницкой, Киевской, Черкасской областях. В каждой из них - по 30-40 сахарных заводов, большинство из них выпускают сахар сезонно. Выход белого сахара по отношению к массе сахара, содержащегося в свекле, называется коэффициентом завода. По сахарной промышленности он составляет 78-80%.
В среднем по промышленности годовой выход сахара составляет 12…13% к массе свеклы, следовательно, на 1 часть выработанного сахара расходуется 7…8 частей свеклы.
Трудоемкость по переработке сахарной свеклы - 15…16 человеко-дней на 100 т свеклы.
Общий расход нормального пара (со средним теплосодержанием 2700 кДж/кг) по заводу составляет 50…60% к массе свеклы.
Общий оборот воды - 1800…2000% к массе переработанной свеклы, он может быть сокращен до 150…300%.

Сводные данные по линиям для производства сахара

Вид ресурса

Ед. измерения

По сырью 20 тн

По сырью 50 тн

По сырью 100 тн

По сырью 200 тн

Примечания

Реальная продуктивность

Зависит от сезона и исходного содержания сахара в свекле

Потребность в паре

Температура пара

Расход воды в сутки мойка клубней

можно рециркулировать

Расход воды сутки производство

Зависит от степени загрязнения клубней

Расход известкового молока в сутки

Температура подачи известкового молока

Концентрация известкового молока



Поделиться